
1 23

World Wide Web
Internet and Web Information Systems

ISSN 1386-145X

World Wide Web
DOI 10.1007/s11280-017-0517-2

An index structure supporting rule
activation in pervasive applications

Yi Qin, Xianping Tao, Yu Huang & Jian
Lü

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

World Wide Web
https://doi.org/10.1007/s11280-017-0517-2

An index structure supporting rule activation
in pervasive applications

Yi Qin1 ·Xianping Tao1 ·Yu Huang1 · Jian Lü1

Received: 22 July 2017 / Revised: 16 October 2017 / Accepted: 22 November 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Rule mechanism has been widely used in many areas, such as databases, artifi-
cial intelligent and pervasive computing. In a rule mechanism, rule activation decides which
rules are activated, when the rules are activated, and which tuples can be generated through
the activation. Rule activation determines the efficiency of rule mechanism. In this arti-
cle, we define the semantic constraints, constant constraint and variable constraint, of the
rule according to the semantics of Datalog rules. Based on the constraints, we propose an
index structure, named Yield index, to support the rule activation effectively. Yield index
consists of the data index and semantic index, and records the complete information of
a rule, including the matching relationship among the tuples of different relations in rule
body. The index integrates tuple insertion and rule activation to directly determine whether
the matching tuples of new inserted tuple exist. Due to this character, we perform effective
rule activation only, avoiding ineffective rule activation that cannot generate new tuples,
so that the efficiency of rule activation is improved. The article describes the structure of
Yield index, the construction and maintenance algorithms, and the rule activation algorithm
based on Yield index. The experimental results show that Yield index has better perfor-
mance and improves activation efficiency of one order of magnitude, comparing with other
index structures. In addition, we also discuss the possible extensions of Yield index in other
applications.

� Yi Qin
borakirchies@163.com

Xianping Tao
txp@nju.edu.cn

Yu Huang
yuhuang@nju.edu.cn

Jian Lü
lj@nju.edu.cn

1 State Key Laboratory for Novel Software Technology and Department of Computer Science
and Technology, Nanjing University, Xianling Road No.163, Nanjing, China

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-017-0517-2&domain=pdf
http://orcid.org/0000-0002-5497-9790
mailto:borakirchies@163.com
mailto:txp@nju.edu.cn
mailto:yuhuang@nju.edu.cn
mailto:lj@nju.edu.cn

World Wide Web

Keywords Index · Rule activation · Dummy tuples · Rule mechanism · Pervasive systems

1 Introduction

Rule mechanism is an important topic in database and artificial intelligent communities.
It has got researchers’ attention for a long time, and has achieved great success in both
scientific study and real-life applications. Recently, rule mechanism has been applied in
new scenarios of pervasive computing, for example, context-aware systems [4, 12, 29],
wireless sensor networks [9] and coordination mechanisms [13]. Lim and Dey [28] report
that 54% of context-aware decision-making models uses rule mechanism after investigating
114 context-aware applications. These rule mechanisms execute in a dynamic and interac-
tive environment, which challenges the efficiency of the mechanisms. A pervasive system
continuously gets all kinds of data as its surrounding environment changes, and its rule
mechanism should be capable of performing data maintenance and rule activation in a high
frequency.

The efficiency of a rule mechanism primarily depends on the efficiency of rule activation.
Rule activation has been defined as determining which rules to activate, when to activate
them, and which tuples can be generated through the activation [5]. When a new tuple t

arrives, the task of rule activation is two-fold. Firstly, it finds the rule that can be activated
by t . Secondly, it solves the rule through locating the matching tuples and generating the
resultant tuples. Since the first step can be done through a naive mapping between rules and
relations, we focus on how to solve a rule efficiently in this article.

We use Datalog as the rule representation, which is as follows.

R0 : hp : −p1, p2, ..., pn

where hp is the head predicate of rule R0, and p1, p2, ..., pn are body predicates. A body
predicate has some arguments, (a1, a2, ..., am), in which ai can be either a variable or a
constant value. Each predicate pi corresponds to a relation Pi , which can be classified as an
EDB (Extensional DataBase) relation or an IDB (Intensional DataBase) relation.

A rule can be represented as a relation algebra expression, P1 �� P2 �� ... �� Pn, that
determines the matching tuples of a rule. When we try to solve rule R0, we have to locate
its matching tuples from body relations. We call this tuple matching in rule activation. For a
non-recursive rule, rule activation performs tuple matching for one time, and then resultant
tuples can be generated. For a recursive rule, one approach is that rule activation performs
tuple matching iteratively, using the derived resultant tuples as the input in next iteration of
tuple matching, until reaching a fixed point [38].

Due to the limited scale and comparative static nature of extensional database, past
researchers focus on how to reduce the number of iterations [18, 40]. However, the boosting
in data scale makes single iteration of tuple matching very time-consuming. Researchers
find that it is difficult to establish large scale expert systems due to the complexity of facts
and rules [5].

Index has been used to improve the efficiency of rule activation through quickly locating
the matching tuples in each relation for mass data. Some rule engines [10, 19, 27] imple-
ment various index structures. They use conventional index structure, such as B tree, to
build the separate indices for related relations. Some researchers also propose specific index
structure to support the rule activation [5, 14, 25]. These approaches build the index on the
join attribute of each relation that corresponds to body predicate, and use the value of join
attribute as the index KEY.

Author's personal copy

World Wide Web

All of the above approaches assume that database update is infrequent [5]. Once a new
tuple t is inserted, the only way to know whether t has matching tuples is to run the activa-
tion algorithm. When a new tuple cannot find its matching tuples, the activation algorithm
will return an empty result. Under this situation, the result of the activation algorithm,
the last index entry of search path, is not stored in the index. We call this the ineffec-
tive invoking of rule activation, which contributes a considerable part to the poor-efficiency
of existing rule activation approaches. Considering the pervasive environment that many
rule systems execute in, the rule activation approach faces continuous updating (inser-
tion of new tuples) to EDB relations, which further intensifies the problem of ineffective
invoking.

Towards these challenges, we propose a new index structure, Yield index, to support
effective rule activation, especially when new tuples are inserted in EDB relations at a high
frequency. Yield index is established according to the rule semantics, which are defined
and decomposed by rule constraints. We conclude two categories of rule constraints, con-
stant constraint and variable constraint. The former expresses the constraints caused by the
constants, and the latter expresses the constraints through the variable argument of other
predicates. We take the following rule for example.

R1 : h(a, b) : −s(3, x, a), t (x, b)

R1 has two constraints. One is a constant constraint, which the first argument value of
predicate s is 3. Another one is a variable constraint that the second argument of s has the
same value as the first argument of predicate t. For different rules, the constant constraints
are rule-independent and only describe the property of predicate arguments. However, the
variable constraints are rule-dependent.

Yield index is a double-layer index structure. The lower level is called the data index,
which is built on the variable constraint arguments of a rule. The upper level is called the
semantic index, which conveys the information of the semantic constraints of the rule. The
pointer of semantic index shifts on the data index, searching for its target value that matches
the variable constraints. Data index enable us to locate specified tuples in a relation through
KEY, which is similar to the conventional index structure. Semantic index represents the
matching relationship between the tuples in different relations of the rule.

A Yield index covers all information of a rule. It integrates tuple insertion and rule acti-
vation to directly determine whether the matching tuples of an inserted tuple exist in Yield
index. When a new tuple t arrives, we insert its KEY into the index, and can immediately
know whether existing tuples can match tuple t , which guarantees that every time of rule
activation is effective. Another important feature of Yield index is that we introduce dummy
tuple in the process of tuple matching. A tuple t is a dummy tuple, which means that there
is no matching tuple of t in related relations. In existing rule activation approaches, rule
activation triggered by dummy tuple is simply discarded and results in ineffective invoking.
However, in Yield index, the explicitly definition of dummy tuple enable us to give an incre-
mental method of rule activation and index maintenance, which avoids ineffective invoking
and greatly improves the efficiency of rule activation.

Our contributions in this article are as follows.

– We propose a two-layer index structure, Yield index, to support the rule activation
effectively, which ensures that each call of activation algorithm is effective.

– We define dummy tuple as the result of unsuccessful tuple matching and give the
incremental updating and activating methods of Yield index.

Author's personal copy

World Wide Web

SEXFATHER MOTHER

--Linda

--Jim

--Bob

GeorgeCobe

--George

JimEllen

TomBill

JimTom

--Alice

--Linda

--Jim

--Cobe

--Bob

AliceEllen

AliceTom

EllenBill

LindaGeorge

LindaAlice

FMary

FLinda

MJim

MBob

MCobe

FEllen

MTom

MBill

MGeorge

FAlice

Figure 1 The tuples of EDB relations

– We show the extensibility of Yield index with presenting new types of semantic index
to support novel datalog-based applications

– We conduct experiments to evaluate the performance of Yield index and other well-
known index structures for rule activation. The results show that Yield index improves
activation efficiency of one order of magnitude and has affordable overhead in both
aspects of time and space for the construction and maintenance.

The remainder of this article is organized as follows. We give the motivation of Yield
index in Section 2. In Section 3, we illustrate the basic ideas of the two-layer structure
in Yield index. We then present our implementation of Yield index in Section 4. Some
extensions and optimizations of the index structure are discussed in Section 5. Evaluation
result is shown in Section 6. We review some related work in Section 7. Finally, Section 8
is the conclusion of this article.

2 Motivation

Since Yield index is based on the matching tuples among the relations of a rule body, we
introduce the matching tuple and dummy tuple.

Definition 1 (Matching Tuple) For relations S and T in the body of rule R, if ∀x, y, ∃z,
tuple s(x, z) ∈ S and t (z, y) ∈ T , the tuple t (z, y) in T is a matching tuple of the tuple
s(x, z) in S, and vice versa.

Definition 2 (Dummy Tuple) For relations S and T in R, if ∀x, y, ∃z , tuple t (z, y) ∈ T

and s(x, z) /∈ S, the tuple t (z, y) in T is a dummy tuple of relation S, and vice versa. The
property of dummy tuple indicates that no tuple in S can match the tuple t (z, y) of T , which
is in the waiting state for matching with new tuples in S.

We give an example to demonstrate the motivation of Yield index. Let father(x, y),
mother(x, y), sex(x, MF) be three EDB predicates, which show that y is x’s father, y is x’s
mother, and x’s gender is M or F respectively. The corresponding relations of three predi-
cates are FATHER,MOTHER and SEX respectively. Figure 1 shows the tuples of three EDB
relations, in which tuple FATHER(Alice, —) represents Alice’s father died.

Author's personal copy

World Wide Web

We have the following rule.

R2 : sonwithparent (z) : −f ather(z, x), mother(z, y),

sex(z,M)

R2 expresses that z is a son whose father and mother are alive, if x is z’s father, y is z’s
mother, and z is a masculinity.

For rule R2, the existing index methods build an index on join variable of each relation
in rule body, such as FATHER.z, MOTHER.z and SEX.z. Some methods [14, 25] also build
an index for matching tuples among relations of rule body. In a pervasive environment, new
tuples of EDB relations may be arrived frequently, which results in frequently maintaining
index and activating rule. However, the approaches of existing indices cannot directly know
whether the new tuple t can trigger an effective rule activation or index adjustment. We
observe the following two problems of these approaches.

(1) Ineffective activation of new tuples

For a new tuple t, existing approaches must invoke activation algorithm to know whether
t has matching tuples in other relations of rule body. If activation algorithm for a new
tuple t cannot find some matching tuples, this invoking of activation algorithm is actually
ineffective. For example, when tuple MOTHER(Mary, Jane) is inserted, activation algo-
rithm will search relation FATHER with KEY “Mary”, but no matching tuple can be found.
Before the arriving of a matching tuple, e.g., FATHER(Mary, ***), the insertion of tuples
like MOTHER(Mary, ***) will cause ineffective invoking, where “***” is a wildcard. This
kind of tuples without matching tuples may account for a considerable proportion, which
greatly harm the efficiency of rule activation. The more this situation appears, the lower the
efficiency of index mechanism is.

(2) Inefficient index maintenance of new tuples

The index between the matching tuples in different relations of a rule body brings big
overload in index maintenance. The frequent arriving of new tuples further increases the
overload of existing approaches since each new tuple results in searching the index. When
tupleMOTHER(Mary, Jane) is inserted and there is no matching tuple in relation FATHER,
existing approaches will terminate this index search and discard the search result (last index
entry). They do not store the unsuccessful information of searching index into the index.
When tuple FATHER(Mary, George) is inserted in FATHER, existing approaches cannot use
the information of anteriorly searching tuple MOTHER(Mary, Jane) to build the matching
relationship between the tuples, FATHER(Mary, George) and MOTHER(Mary, Jane). They
have to search relationMOTHER with KEY “Mary” again, which increases the cost to build
and maintain the index.

Our purpose is to make full use of the information of searching index every time, and
store it in the most appropriate location in the index. And for any tuple t, we can know
whether t has the matching tuples in other relations based on our index. These methods can
improve the efficiency of building index, maintaining index and activating rule.

We use Figures 2 and 3 to further explain the intuition of Yield index using the exam-
ple described in Figure 1. When constructing the index, we first build data index to index
the tuples in relation FATHER and MOTHER, respectively (illustrated as the linear table in
Figure 2). Data index can be built using traditional index structures, such as linear table, B
tree, andB+ tree. We use linear table here for the easy of explanation, and useB+ tree in lat-
ter evaluation for efficiency considerations. Based on the data index, Yield index also builds

Author's personal copy

World Wide Web

……

Bill

……

Cobe

Ellen

......

Linda

Tom

T, IS, Tom,

T, IS, Bill,

T, IS, Ellen,

F, IS, Mary,

data index of FATHER data index of MOTHER

Seman�c index
……

Bill

……

Cobe

Ellen

......

Mary

Tom

Alice --

Tom Jim

Bill Tom

Ellen Jim

George --

Cobe George

Bob --

Jim --

Linda --

Mary Jane

Alice --

Tom Jim

Bill Tom

Ellen Jim

George --

Cobe George

Bob --

Jim --

Linda --

FATHER MOTHER

Figure 2 Yield Index on relation MOTHER in rule R2 after inserting MOTHER(Mary, Jane)

semantic index between FATHER and MOTHER, as illustrated in the middle of Figure 2.
For tuple FATHER(Bill, Tom), a semantic index entry (T, IS, Bill) links itself and its match-
ing tuple MOTHER(Bill, Ellen)’s data index. Here the first argument of the semantic index
entry indicates whether the entry connects to a matching tuple (as T) or a dummy tuple (as
F). The second argument describes the types of the entry and the third argument records the
value of the constrained argument in matching tuples. Semantic index is built after the con-
struction of data index and it connects the matching/dummy tuples between the relations
under the data index. When performing rule activation, one can easily know if a tuple has a
matching tuple and directly locate the matching tuples using semantic index.

The dummy tuple further improves the efficiency of activating rule when the index is
updated due the insertion of a new tuple. When a tupleMOTHER(Mary, Jane) is inserted in
relationMOTHER, as illustrated in Figure 2, there is no matching tuple for it in the relation
of FATHER. As a result, MOTHER(Mary, Jane) is as a dummy tuple of FATHER and a
semantic index entry (F, IS, Mary) is built. The dummy tuples are pointed by the dotted
line. The entry is pointed by the last index entry of search path in FATHER’s data index
based on “Mary” value, which is an index entry of nearest real position. Later, when tuple

……

Bill

……

Cobe

Ellen

......

Linda

Mary

Tome

T, IS, Tom,

T, IS, Bill,

T, IS, Ellen,

F, IS, Mary,

data index of FATHER

Seman�c index
……

Bill

……

Cobe

Ellen

......

Mary

Tom

Alice --

Tom Jim

Bill Tom

Ellen Jim

George --

Cobe George

Bob --

Jim --

Linda --

Mary Jane

Alice --

Tom Jim

Bill Tom

Ellen Jim

George --

Cobe George

Bob --

Jim --

Linda --

Mary George

FATHER MOTHER
data index of MOTHER

Figure 3 Yield Index on relation FATHER in rule R2 after inserting FATHER(Mary, George)

Author's personal copy

World Wide Web

RULE

CE1

Semantic Index

Data Index

CE2

Entry1 Entry2 ...

tuple tuple

tuple

Semantic Index

Data Index Entry1 Entry2 ...

tuple tuple

tuple

Figure 4 A Sketch of Yield Index Structure

FATHER(Mary, George) arrives and “Mary” is inserted in the data index of FATHER, as
illustrated in Figure 3,MOTHER(Mary, Jane) is directly adjusted for a matching tuple (This
is only a pointer adjustment). Finally semantic index entry between relations MOTHER
and FATHER is directly used to locate matching tuple MOTHER(Mary, Jane) in MOTHER,
without the need to search MOTHER’s index. Thus, Yield index can significantly improve
the efficiency of activation algorithm when the relations are updated.

Figure 4 gives a schematic demonstration of Yield Index. The double-layer structure
brings multiple benefits to Yield index. Firstly, data index functions as an indicator of the
relation tuples, which enables the incremental shifting of the semantic index on data index.
This results in a significant efficiency improvement in rule activation. Secondly, indepen-
dent data index means that it would be shared by different rules, which reduces the overhead
brought by index maintenance and the index file size. Last but not least, the structure has
good extensibility since the semantic constraints are only related to the semantic index.
Additional semantic information of extended Datalog can be indexed through new types of
semantic index without modifying other part of the structure.

3 Yield index

In this section, we give an overall introduction on Yield index. We first define some impor-
tant concepts concerning rule semantics and constraint elements. Then an overview of the
index structure is given. After that, we focus on some design issues of Yield index, includ-
ing how to derive constraint elements from a rule, how to handle multi-variable constraints
and how to choose data index.

3.1 Constraint elements

Definition 3 (Constraint Element (CE)) A constraint element(CE) on a predicate p is a
binary restriction that forms as x = y, where x is a variable of p, and y can either be a
constant value or another variable. If y is a constant value, the constraint element is a con-
stant constraint. If y is a variable of another predicate, the constraint element is a variable
constraint. Apparently, the syntax of Datalog rule has only these two kinds of constraints
[5].

A constant constraint can be represented as a built-in predicate. For example, the meaning
of rule R3 is the same as rule R1:

R3 : h(a, b) : −s(z, x, a), t (x, b), z = 3

Author's personal copy

World Wide Web

The variable constraint represents the relationship between the variables of different
predicates and restricts the tuples that can be matched with the tuples in different relations.
We use matching tuple and dummy tuple to define whether the tuples satisfy a variable
constraint.

Based on constraint elements, we can establish the matching relationship between all
involved relations through either matching tuples or dummy tuples. Therefore, rule activa-
tion algorithm can use such matching relationships to accomplish tuple matching among
the relations. Constant constraints work as a filter in Yield index. A tuple that does not
satisfy constant constraints will not be inserted into the index. As a result, the activation
algorithm will not consider this kind of tuples because the matching relationship between
the tuples is neither originated from the tuple, nor pointed to the tuple.

The dummy tuple is one of the key features of Yield index. Through indexing dummy
tuple along with matching tuple, successful matching relationship and failed matching
relationship between the relations can be indexed and maintained. In Yield index, the
information of a dummy tuple t is stored at the anticipated position where t’s match-
ing tuple should appear. Recording failed matching relationship enables Yield index to
know whether a coming tuple triggers some successful matching tuples without per-
forming an all-around rule activation. With dummy tuple, Yield index also achieves an
incremental maintenance manner for the index, which greatly improves its maintenance
efficiency.

We use R1 to further explain the aforementioned concepts. Consider a tuple t (x, b) in
relation T . For the variable constraint on variable x between S and T , we need to search the
value of x in relation S. If we find a matched index entry e that builds on relation S, which
indicates that t is a matching tuple of some tuples in S, the information of t is then inserted
into the entry e. Otherwise, t is a dummy tuple of S and the information of t is inserted
into an anticipate position of x’s value. Intuitively, the anticipate position is the index entry
that the value of x should be inserted in the corresponding index, which will be detailed
discussed in Section 3.5. In the latter situation, when a new tuple tn of S is inserted, we
decide whether t’s information remains on the anticipate place, according to the x value of
t and tn. If not so, the position of t’s information will be adjusted. We repeat the procedure
along with the insertion of tuples, until t becomes a matching tuple of a new tuple that is
inserted in S.

3.2 An overview of yield index

Yield Index consists of data index and semantic index. The data index is used to filter and
quickly locate tuples, depending on the constant and variable constrain attributes. Different
rules can share one data index if they have the constraints on the same attribute of same
relation simultaneously. The semantic index conveys the matching relationship among the
relations according to the corresponding variable constraints. We record the information
about the matching tuples and dummy tuples as the entries of semantic index. Semantic
index can locate the matching tuples of a specified key stored in the data index, and can be
regarded as a special index entry of the data index.

Figures 5 and 6 illustrate the structure of Yield index of an example. The rule R11 is
decomposed to three constraint elements which are depicted asCE.1,CE.2 andCE.3. Data
index is built on the restricted arguments that appear in the constraint elements, for example
W.$2 and S.$1. Semantic index is built according to the derived constraint elements. CE.1,
W.$1 = 3, is a constant constraint, which is used to filter the tuples in the data index built on
W.$2. The other two constraint elements are variable constraint, and their semantic indices

Author's personal copy

World Wide Web

R
1
1
:

q
(a

,
b
):

-
w

(3
,

x
),

 s
(x

,
a)

,
t(

x
,

b
)

CE.1

W. $1 = 3

CE.2

S. $1 = W. $2

CE.3
T. $1 = S.$1

T, CS, 3, R1, W_2, --

T, IS, 2, R1, T_2, S_1

Data IndexSemantic Index

2 4

 5 3

 7 6

 1 8

 4 10

 5 11

 4 12

T, IS, 2, R1, S_1, W_3

F, IS, 3, R1, S_1, W_4

F, IS,12, R1, S_3, W_5

 6 7

 2 1

 3 2

 3 3

3 12

5

S.$1

2

7

Pointers

2 9

T.$1

1
Pointers

2

4

5

W

S

T

T, IS, 5, R1, T_4, S_2

F, IS, 7, R1, T_4, S_3

3

2

12

PointersW.$2

Figure 5 The Yield Index Structure of Figure 6

convey the matching relationship between the relations. Taking CE.3, S.$1 = T$1, as an
example, the semantic index connects the matching tuples from relations S and T , as well
as the dummy tuples between relations S and T.

The entry of data index has the following form.

(KEY, MatchPointer, DummyPointer, KeyPointer)

Here KEY is the value of key. MatchPointer points to the matching tuples which satisfy
variable constraint. DummyPointer points to dummy tuples. KeyPointer points to the tuples
with KEY value.

The entry of semantic index is the following form:

(Fire, Type, KEY, RuleName, Root, Pointer)

The Fire indicates whether the index is fired. Its value is T or F. T means to point to
matching tuples. Otherwise, it points to dummy tuples. The Type suggests the type of the
index. Different semantic index types express different kinds of semantic constraints. In
Figure 5, CS denotes the semantic index of constant constraint, and IS denotes the semantic
index of variable constraint. KEY stores the value of the attribute with variable constraint
in another relation. Rulename indicates rule name. Root shows who brings the constraints

Figure 6 The Example of Rule
and Instances

Author's personal copy

World Wide Web

and Pointer shows who is bound by the constraint. In the evaluation in Section 6, Root and
Pointer are used to locate the corresponding entries of data index. We can get the tuples
through the entries of data index.

Semantic index shifts their pointers on data index, searching for their target values. The
shifting enables Yield index to be aware of the status of the rule activation process since data
index functions as indicators of the current relation. Unlike other kinds of index structures,
the semantic index is updated even when we cannot return a successful search result in
the index. If a tuple t is a matching tuple of other tuples, Yield index quickly locates its
matching tuples, and yields (means to generate) the resultant tuples. If no tuple matches t,
it locates at the last position of searching path and will yield a semantic entry of dummy
tuple for tuple t. Therefore, we call our index structure Yield index. The “yield” property
of semantic index implies its incremental modification ability, which enable Yield index to
maintain the index and perform rule activation simultaneously. This ensures that each rule
only accesses its tuple no more than one time to complete the index maintenance and rule
activation, which improves the efficiency of rule activation.

3.3 Constraint decomposition

In the construction of Yield index, we first decompose the rule constraints into constraint
elements in order to recognize the semantic constraints of the rule. Once the CEs are
derived, data index and semantic index are built accordingly. Here we present a constraint
decomposition method to derive the CEs from a rule.

Definition 4 (matching Set of Constraint Elements(SCE)) Given a set of constraint ele-
ments sc = {ce1, ce2, ..., cen} and a rule R, sc is a SCE of R iff an arbitrary set of tuples
that satisfy the constraints of R also satisfies every constraint element in sc, and vice versa.

The constraint elements of a rule should be included in the SCE of the rule. We use the
following method to construct the SCE for the rule R.

1) If a join relationship exists between relations Pi and Pj of a rule body, we create a
variable constraint that Pi.$l = Pj .$m, where l and m are the positions of join variables
of two relations respectively.

2) If a built-in predicate Pk.$n = c exists, we create a constant constraint directly, such as
Pk.$n = c.

Let rule R4 be as follows.

R4 : h(a, b, c) : −s(3, x, a), t (x, b), w(x, c)

We can get the SCE of rule R4.

SCE = {
S.$2 = T .$1, S.$2 = W.$1, T .$1 = W.$1, T .$1 = S.$2,

W.$1 = S.$2,W.$1 = T .$1, S.$1 = 3
}

The SCE can be used to construct data index and semantic index directly. But this will
result in a big space-consuming since the SCE may contain some reduplicated constraint
elements, like S.$2 = T .$1 and T .$1 = S.$2. The scale of an index is dependent on the size
of SCE. A small SCE not only saves the space, but also saves time.

Algorithm 1 is used to simplify the SCE for theMinimum Constraint Element set,MCE,
so that we can eliminate the redundant constraint elements and generate a compact SCE. For
constant constraint elements, we simply move them from the input SCE to the output MCE

Author's personal copy

World Wide Web

since they cannot be redundant (lines 4-6). For variable constraint elements, we not only
move the current constraint elements into the output MCE (lines 8-9), but also transform
all the depended constraint elements to reduce redundancy (lines 10-11). For example, in
rule R4, we have a subset of constraint elements, {S.$2 = T .$1, S.$2 = W.$1, T .$1 =
W.$1, T .$1 = S.$2, W.$1 = S.$2, W.$1 = T .$1, S.$1 = 3}, in that all of the individual
constraint element depends on each other. Thus, we can reduce the set of constraint elements
to two constraint elements {T .$1 = S.$2, W.$1 = S.$2}. Applying Algorithm 1 on rule R4,
we can generate the MCE of rule R4 asMCE = {S.$1 = 3, T .$1 = S.$2, W.$1 = S.$2}.

Algorithm 1 SCE Simplification

Input:
A Datalog rule

S: The SCE of R;

Output:
M: The MCE of R;

1: M = NULL;

2: while is not empty

3: get a constraint element from

4: if y is a constant

5:

6: //move from to

7: else
8:

9: //move from to

10:

//remove all s that are depended on with

11:

//reform and add the depended constraint elements into

12: return M;

3.4 Multi-variable constraint

A predicate may involve in one constraint element or multiple constraint elements. If all
predicates of a constraint element are not bound by other constraint elements, we call the
constraint element a single-variable constraint. Multi-Variable constraint means that more
than one arguments of a predicate are bound by the constraints of the rule. For example,

R5 : t (x, b) : −s(x, 5, 1), w(x, b)

Relation S(x, 5, 1) in rule R5 is bound by multi-variable constraints, one variable
constraint and two constant constraints. A tuple of relation S should match two constant con-
straints simultaneously, S.$2 = 5 and S.$3 = 1, as well as a variable constraint, S.$1 = W.$1.
In some works, rule-specific index is used to solve this problem [5, 30]. A composite
attribute is used, S.$2 + S.$3 in rule R5 for example. As a result, every rule in the system
has an independent index structure, which increases the overhead and maintenance cost of
the index structure.

We build one data index for each variable with variable constraint in Yield index. For
example rule R5, we build one data index on attribute S$1. Two constant constraints, S$2=5

Author's personal copy

World Wide Web

and S$3=1, are used to filter the tuples during building the data index. But this is suitable
only when relation S appears in one rule. If relation S appears in two or more than two
rules, the constant constrain on S can not filter the tuples in building the data index. This
makes the data index independent of rules, which enables different rules to share the same
data index when the rules put constraints on the same attribute of a relation. We use the
semantic index to build the matching tuples between S and W in rule R5. If a predicate p is
bound by multi-variable constraints, the matching tuples in relation P are determined based
on these constraints simultaneously. Each constraint is used to generate a set of candidate
tuples in relation P . The set of matching tuples in relation P is the intersection of the sets of
derived candidate tuples. As a result, all founded tuples in the relation P satisfy all constraint
elements in the predicate p.

3.5 Position of dummy tuple

For dummy tuples, Yield index needs to determine their semantic index pointers based on
anticipating the position of the KEY value in the data index. The choice of data index puts
influence on the correctness and the performance of Yield index. The data index of Yield
index should satisfy the following property.

Definition 5 (Search Path) Given an index structure I and a relation S, for a tuple t in S,
let P t

I S be the search path of t in S based on I . If S′ be an updating version of relation S,
the new search path of t in S′ based on I is P t

I S′ .

Definition 6 (Search Invariant Property) Given an index structure I and a relation S, I

owns search invariant property iff for arbitrary tuple t and S′, P t
I S and P t

I S′ satisfy:

1) Both P t
I S and P t

I S′ are deterministic and pass each node no more than once.
2) If the end index entry e of P t

I S exists in the data index of S′, then e exists in P t
I S′ .

The searching invariant property enables us to maintain the semantic index incremen-
tally once a new tuple is inserted into a relation. It guarantees that the past shifting of
the pointers of semantic index is valid during the rule activation. This can dramatically
decrease the cost in index maintenance and rule activation. However, searching invariant
property does not solve everything in the maintenance of semantic index. When a new
index entry is inserted, we have to shift the pointer toward an appropriate index entry on
the data index. Figure 7 shows an update process of semantic index. Due to the searching
invariant property, the pointer which aims at value 6 does not start from the index head
at every time when the data index is updated. It can remain the correction of data index
incrementally.

When a new tuple t is inserted, we can update the semantic index incrementally without
searching for the KEY value of the matching tuples. Specifically, when the insertion of t

creates a new data index entry en after an old data index entry eo, we update the semantic
index under eo. For all semantic index entries under the dummy pointer of eo, we first
check whether any dummy tuple td can match t . If so, we need to move the index entry of
td from the DummyPointer of eo to the MatchPointer of en, a new data index entry. After
that, we check whether the remaining semantic index entries under the DummyPointer of eo

need to be moved. If the new data index entry can extend the search path of dummy KEY
of a semantic index entry, the semantic index entry is moved to the DummyPointer of en.
Otherwise, the semantic index entry remains in the position under the DummyPointer of eo.

Author's personal copy

World Wide Web

$1

$1

$1

$1

$1

Figure 7 Illustration of searching invariant property and incremental shifting

Many existing storage structures have the searching invariant property, including binary
sort tree and B-tree. The index approaches with searching invariant property can be used as
the data index structure of Yield index.

4 Implementation of yield index

In this section, we give the implementation of Yield Index, including how to construct Yield
index on existing relations, how to update Yield index when a new tuple is inserted, and
how to perform rule activation using Yield index.

4.1 Index construction

4.1.1 Data index construction

Data index is build on every relation bound by constraint elements in the SCE of a rule.
Some strategies of establishing data index are as follows.

(1) Concerning constraint priority. If the relation with constant constraint only appears
in one rule, the attribute with constant constraint is first chosen to filter tuples. The
tuples that do not satisfy the constant constraint are not inserted into the data index.

(2) Concerning constraint type. For the relations with single-variable constraint, we build
a data index for each relation on the attribute bound by variable constraints; for the
relations of multi-variate constraint, we build a data index for each variable bound by
variable constraint.

Author's personal copy

World Wide Web

Algorithm 2 shows the process to build the data index of Yield index. The algorithm takes
a Datalog rule R and its minimal constraint element set M as its input, and build Yield index
on the tuples in the related relations. The algorithm mainly consists of two steps. In the
first step, we build Yield index’s data index for the predicates that are constrained in R,
and record the tuples that semantic index needs to be built on. In the second step, we build
semantic index for the recorded tuples (using Algorithm 3 in Section 4.1.2). Specifically,
for each of R’s body predicates Pi , we go through the constraint elements in M to decide
if index needs to be built on Pi’s tuples (lines 3-5). For constant constraints, only the tuples
that satisfy the constant constraint are kept for index construction (lines 6-9). For variable
constraints, we keep all the involved tuples and build corresponding data index for Pi if
the data index has not been built yet (lines 10-14). Finally, we use Algorithm 3 to build the
semantic index for each tuple we collected in the set of T oIndex (lines 15-16).

4.1.2 Semantic index construction

Based on the data index, we build the semantic index of Yield index to get the matching
relationship among the body relations according to the SCE of the rule. The strategies of
building semantic index are as follows.

(1) For each element in SCE, we will build the corresponding semantic index, which
directly defines the tuple matching relationship between two relations involved by the
SCE element.

Author's personal copy

World Wide Web

(2) The semantic index of each variable constraint, such as S.x=W.x, in SCE is successively
built in the form of increasing cardinalities of the relations. Let the cardinalities of
relations S and W be N(S) and N(W). We choose the relation S as main relation to
build the semantic index between S andW if N(S) > N(W).

Algorithm 3
Input:

A tuple : rule name, TD : the address of

The relation that belongs to;

M: a set of constraint elements;

1: for each M
2: if is a variable constraint that

//search for the place that the entry of sematic index should be built on

3: search for value in the data index on , end on an index entry ;

4: if search successes // build a matching index entry for matching tuples

5: create a matching index entry JI(T, SI, y, R, TD, e);
6: insert JI into

7: else // no matching tuple exists and build a dummy index entry

8: create a dummy index entry JD(F, SI, y, R, TD, e);
9: insert JD into

Algorithm 3 describes how to build the semantic index entry for a given tuple t using the
variable constraint in a SCE of the rule. For a variable constraint P.x = Pi.y, semantic
index entries are built for the tuples in relation P which satisfy the constraint. The value of
attribute y is used as the KEY of semantic index entry and the address of the tuple is used
as the tuple address TD of semantic index entry. Finally, we insert the semantic index entry
under the MatchPointer or DummyPointer of an appropriate data index entry in Pi .

Data index is also used to determine the position to insert the semantic index entry. We
search for the index entry with KEY, which is denoted as t.x (line 3). If such an index entry
e is found, a semantic index entry (T, SI, KEY, R, TD, e) is inserted under the MatchPointer
of e (lines 4-6). Otherwise, the search mechanism locates at the last index entry e on the
search path of t.x in the data index. We insert the semantic index entry (F, SI, KEY, R, TD,
e) under the DummyPointer of e, indicating the dummy tuple that it points to (lines 7-9).

4.2 Index maintenance

4.2.1 Tuple insertion

When a new tuple t is inserted, Yield index not only updates the data index and semantic
index for tuple t , but also adjusts existing semantic index entries which are affected by t .
Algorithm 4 describes how to update Yield index when a tuple t is inserted. We first check
whether the new tuple t satisfies all constant constraints on the corresponding relation. We
simply discard tuple t and terminate the algorithm if the check fails (lines 1-5). If the check
successes, then the KEY of t is inserted into the data index. If a corresponding data index
entry exists for t , we insert the information of t under the entry (lines 6-11). If no such
entry exists, we insert t as a new data index entry (lines 12-14). After that, we update
the semantic index of the involved data index entry, including the index entries under the
MatchPointer and DummyPointer (lines 15-21). Finally, the semantic index entry of t is
built using Algorithm 3 (line 22).

Author's personal copy

World Wide Web

Updating the semantic index entries along with the insertion of new tuple enables Yield
index to perform index maintenance in an incremental manner. When the insertion of a
new tuple t results in a new data index entry ne in the data index (lines 13-14), we have to
update the semantic index entries connected to the precursor index entry e of ne. Assum-
ing the KEY value of ne is K1 (t.x in the algorithm), and the Dummy KEY value of a
semantic index entry JD is K2 (JD.KEY in the algorithm), the update strategies are as
follows.

1. If K1 < K2, which means that the semantic index entry JD cannot be matched by t

and ne is on the searching path of K2 in the data index, then JD is moved under the
DummyPointer of ne (lines 16-17).

2. If K1 = K2, then the semantic index entry JD is moved under the MatchPointer of ne

(lines 18-21). Meanwhile, we can perform rule activation on the tuple t .

Author's personal copy

World Wide Web

3. If K1 > K2, which means that the semantic index entry JD cannot be matched by t and
ne is not on the searching path of K2 in the data index, we will not update JD.

The successful establishment of semantic index entry of new tuple t means that the
matching tuples of tuple t already exist according to Yield index. At this moment, activa-
tion algorithm should be called, which ensures that ineffective activation is not called for
the new tuple t. This process integrates the insertion and activation for a new tuple t, which
improves the efficiency of rule activation.

4.2.2 Tuple deletion

When a new tuple t is deleted, Yield index will also update the data index and semantic
index affected by tuple t.

Algorithm 5 Deletion of a Tuple

Input:
A Datalog rule R :

A tuple t(x, y) of relation which will be deleted;

M : The MCE of

1: for each // check to collect constrained arguments to a set

2: if is a variable constraint “

3:

4: search value in the data index on and end on an index entry

5: locate the KeyPointer and MatchPointer in which = t.y;

6: = NULL; // remove from data index

7: for each // check if is connected to any semantic index entries

8: if e.MatchPointer NULL

9: search value in the data index on and end on an index entry

10: locate MatchPointer in ne ,which is equal to e.MatchPointer;

//find the matching tuples of

11: ne.MatchPointer = NULL;

//remove the semantic index entries connecting and its matching tuples

12: Delete in the data index of

13: Delete in the data index of

14: Delete the semantic index entry pointed by e.MatchPointer;

Algorithm 4 describes how to update Yield index when a tuple t is deleted. First, we use
theMCE to find the constrained attributes related to relation Pi and store the result in set U
(lines 1-3). Then we locate t’s index entry e in data index through key (lines 4-5). Based on
e, we use U to check if there is semantic index that connects to e. We set the corresponding
pointers of the found semantic index to NULL and delete the key of t from data index of
Pj (lines 7-12). Finally, we delete the data index entry of t and the related semantic index
entries (lines 13-14).

4.3 Rule activation using yield index

Rule activation can be triggered by either a query on existing tuples, or the insertion of a
new tuple t. In the first situation, Yield index is used to find all combinations of matching
tuples, and then generate the resultant tuples. In the second situation, Yield index is used

Author's personal copy

World Wide Web

to locate all matching tuples of the new tuple t and generate the resultant tuples. Unlike
existing rule activation approaches, Yield index itself supports directly locating of matching
tuples from different relations. As a result, the set of matching tuples is derived through the
semantic index.

Algorithm 6 Rule Activation for a Tuple,

Input:
A Datalog rule

M : The SCE of R ;

t : A tuple of relation

Output:
MT : A set of matching tuples based on t and Rule R;

1: MT
2: last // current processing predicate

3: Used is related to predicate in

//processed constraint elements

4: S

// the target value of ’s matching tuples

5: while Used
6: TS = S’s matching tuple set in with

// locate matching tuples of relation

7:

// use join operation to derive the set of matching tuples

8: = search next constraint element;

9:

10:

// move to the next constraint elements

11: return ;

Algorithm 6 illustrates how to perform rule activation for a new tuple t , which joins suc-
cessively with the rest relations of rule body based on each constraint element and Yield
index. We start from adding t to the matching tuples set MT (line 1). Then we use set Used
to store all constraint elements, cei , related to last.x (line 3). Let each cei be a variable con-
straint last.x = Pk.y, which last.x is an attribute in MT and Pk.y is an attribute in relation
Pk . Set TS stores the tuples which satisfy variable constraint, last.x = PK.y, in relation
Pk , which is directly solved based on the matchPointer of data index and Root of semantic
index (line 6). The number of attributes in MT is increased step by step through the join
operation between MT and new relation PK (line 7). Algorithm 6 is an iterative process, in
which each loop needs to determine the join attributes of MT and next relation Pk through
the constraint element last.x = Pk.y. Set S stores the attribute values of MT, which will
join with relation Pk in next loop (line 10). Since line 7 involves the join operation among
multiple relations in the loop, we adopt single tuple technique to avoid the intermediate
result files. Algorithm 6 can ensure that each tuple is accessed only once based on Yield
index.

Algorithm 7 illustrates the rule activation for all existing tuples. We select a relation and
use Algorithm 6 to activate the rule for every tuple in the relation.

Author's personal copy

World Wide Web

Algorithm 7 Whole Relations Activation

Input:
A Datalog rule

M : The SCE of R;

Output:
MT : A set of matching tuples based on

1: let be a relation that belongs to

2: ;

3: for each that belongs to

4:

5: return

5 Optimization and extension

In this section, we discuss some optimization and extension techniques based on Yield
index.

5.1 Further optimization

The SCE decomposition method given in Section 3.3 is a pessimistic method that takes the
worst situation into consideration in order to guarantee the correctness of the derived SCE.
However, an optimistic method can be applied to improve the performance of Yield index.

R7 : q(x, y) : −p1(x, z), p2(y, z), p3(w, z)

R7 : q(x, y) : −p1(x, y), p2(x, z), p3(y,w), p4(y, u)

The SCE of rule R6, {P1.$2 = P2.$2, P2.$2 = P3.$2, P1.$2 = P3.$2}, is a rule with one
constraint variable z. For these constraint elements, original Yield index will build three data
indices for P1.$2, P2.$2, and P3.$2 respectively. However, only one data index is sufficient to
perform rule activation. We can choose the relation with the largest cardinality to build the
data index. Assuming that P1 has the largest cardinality among the three relations, the data
index is built on P1.$2 only. For a tuple t (y, z) in relation P2 (or P3), we use z to search the
data index, and use Algorithm 3 to add the index entry of t into the semantic index between
relations P1 and P2 (or P3). This enables us to find all the tuples with value z, regardless that
the found tuple is in relation P1, P2, or P3. Therefore, we can find all matching tuples of t .
This optimization can dramatically decrease the space overhead of Yield index through lim-
iting the number of data indices. For the rule which has one constraint variable for example
rule R6, the more the predicates of a rule are, the more effective this method is.

The above optimization can be extended to a rule with multiple variable constraint. In
rule R7, we have two variables with variable constraint, x and y, among P1, P2, and P1,
P3, P4, respectively. Only two data indices are enough according to the above optimization.
We select the relation with the largest cardinality to build the data index for each vari-
able with variable constraint. If a data index has already existed in the selected relation,
we choose the relation with the second largest cardinality until the relation has not been
used before. Let the cardinalities of relations P1, P2, P3 and P4 be N(P1), N(P2), N(P3)

and N(P4), respectively, where N(P1) > N(P2) > N(P3) > N(P4). We select relation
P1 to build a data index for variable x. Then for variable y, an ideal selection is relation

Author's personal copy

World Wide Web

P1. Since P1 has been used for x, we select P3 to build a data index for variable y. The space
complexity for constructing the data index and semantic index can be greatly reduced using
this. We have to process one index first and generate an intermediate tuple set that contains
the matching tuples bound by the variable with variable constraint. Then, for the tuples in
the intermediate tuple set, we use the remaining index to find the matching tuples bound by
other variable with variable constraint.

5.2 Extensibility of yield index

The extended Datalog brings new types of constraints so that we require new types of
semantic index to express their additional semantic information. Two types of specific
semantic index are presented in order to demonstrate how to use Yield index to deal with the
additional constraints from the extended Datalog languages. We also discuss the possibility
of solving transitive closure using Yield index.

5.2.1 Extension on inequality constraint

Inequality is a very useful relationship in various applications, for example “Find all con-
ference participants that leave after five p.m” and “Collect temperature information if the
temperature difference is more than 40”. Inequality is processed as built-in predicate in
existing works [9].

The constant constraint and variable constraint discussed in Section 3 are equivalent
constraint, which means the relationship between the constraint variables is equivalent.
However, the relationship between the constraint variables is more complex in inequal-
ity constraint. Yield index can be extended to support the rule activation with inequality
constraint. We introduce a new type of semantic index, InequalityS, to deal with inequal-
ity constraints. InequalityS includes the following five Inequality types to specify the
relationship between the variables in an inequality constraint.

– Equivalent type (EQJ): Pi.$1 = Pj .$2, which is discussed in original Yield index.
– Greater type (GJ): Pi.$1 > Pj .$2.
– Greater/equivalent type(GEJ): Pi.$1 ≥ Pj .$2.
– Less type (LJ): Pi.$1 < Pj .$2.
– Less/equivalent type(LEJ): Pi.$1 ≤ Pj .$2.

Figures 8 and 9 give the index structure with the InequalityS of an example. The intu-
ition of InequalityS is to index the boundary of inequality constraints in order to restrict
the matching tuples within the interval bound by the semantic index entries. Due to the
searching invariant property, we can decide if a tuple matches the inequality constraint by
checking whether its searching path encounters the InequalityS index entry or not. We use
two semantic subtypes, InequalityS-l and InequalityS-r, to denote the left and right boundary
of restricted interval respectively.

Apparently, the structure of Yield index remains the same in dealing with the new seman-
tic index type. Owing to the difference between equality constraint and inequality constraint,
the implementation in Section 4 should be modified. A difference is that a satisfied tuple
of InequalityS does not require directly under a fired semantic index entry. Whether a tuple
matches an inequality constraint is determined by the encounters of the InequalityS index
entries during its searching path. The modification of rule activation should be made due to
the lack of explicit semantic index entries indicating who puts the inequality constraint on
the tuple.

Author's personal copy

World Wide Web

R
1

2
:

Q
(a

,b
):

-
W

(a
,x

),
 S

(y
,

b
)

a
>

 3
,

x
 >

 y

CE.1

W. $1 > 3

CE.2

S. $1 < W.$2

Data IndexSemantic Index

T, GJ-l, 3, R2, W_2, -

6 7

2 1

3 2

3 3

3 12

2 4

5 3

7 6

T, LJ-r, 7, R2, S_1, W_1

3

W.$1

2

6

Pointers

5

S.$1

2
Pointers

7

Figure 8 The Extended Yield Index Structure of Figure 9

5.2.2 Yield index with Snlog

Snlog is a specificDatalog-based declarative language [9], which is developed for the design
and implementation of declarative sensor networks. To manage and execute logic languages
on sensor networks, Snlog requires that every EDB predicate must have an argument that
indicates its stored address. A location specificity symbol of an underlined address field
is introduced to denote the location of the tuple. Some rule-level constraints of Snlog are
presented in [22]. We assume that the Datalog-like rules satisfy the definition of Snlog. A
typical Snlog rule is as follows.

path(s, d, p, c) : − loc(s, z, c1), path(z, d, p2, c2), c = c1 + c2,

p = concatpath(loc(s, z, c1), p2)

The denotation of location is the major difference between the syntaxes of Snlog andDat-
alog, which brings new semantic information. Location constraint guarantees that all tuples
which participate in current rule activation and new tuple are stored at the same node so that it can
guarantee the validation of the execution of Snlog [9]. In order to build Yield index structure
for Snlog, a new type of semantic index should be designed for the location constraint.

Together with the local information, we would translate the location constraint into some
constraint elements. In the above Snlog rule, the constraint elements are:

{LOC.$2 = local address, PAT H.$1 = local address}
Although these constraint elements have the similar form as constant constraint elements,

their semantics are different because they are the preconditions of other constraints. These

Figure 9 The Example with
Inequality Constraints

Author's personal copy

World Wide Web

R
1
3

:

 P

(x
,
y
):

-
L

(x
,
a)

,
P

(a
,
y
),

 D
(x

,
z)

N
o
d
e

ad
d
re

ss
 =

1

CE.1

L. $2 = 1

CE.2

P.$1 = 1

Data IndexSemantic Index

T, AddS, 1, R3, L.$2, 1, -

6 5

2 1

3 7

3 3

13 3

2 3

1 1

5 6

7 2

T, AddS, 1, R3, P.$1, 1, -

CE.3

L.$1= D.$1

F, IS, 2, R3, D.$1, 1, 2

1 3

5 1

7 6

4 2

L.$2

1
Pointers

3

5

7

P.$1

1
Pointers

2

5

7

D.$1

1
Pointers

4

5

7

L

P

D

Figure 10 The Extended Yield Index Structure of Figure 11

constraint elements have the higher priority than the others. We introduce a semantic index
type of AddressS to express this constraint. Figures 10 and 11 give the index structure of
Yield index with AddressS of an example.

Due to their higher priority, the construction and maintenance of AddressS index entries
are independent from the normal semantic index entries. Once a location constraint is iden-
tified, we build the AddressS index entry before the construction or other operations of Yield
index. The procedure of building AddressS index entries is the same as the CS index entries.
When an unsuccessful searching for index entry occurs during the construction and mainte-
nance of AddressS index entries, we halt the whole process of index construction until some
inserted tuples fire the unsuccessful AddressS index entries. The rule activation of AddressS
index entries remains the same as normal semantic index types, such as CS and IS, since
the evaluation of Snlog is nearly the same as Datalog besides the introduce of the location
specificity symbol.

5.3 Recursive rule with yield index

Previously, we focus on single iteration activation of a datalog rule with Yield index. How-
ever, datalog rule is sometimes recursive in modeling a concrete application. Let PARENT(x,

Figure 11 The Example with
Inequality Constraints

Author's personal copy

World Wide Web

y) be one EDB relation, which represents y is x’s parent. Then the ancestor relationship can
be represented by the following rules.

RA : ancestor(x, y) : − parent(x, y)

ancestor(x, y) : − parent(x, z), ancestor(z, y)

Rule RA is a typical recursive rule. Agrawa et al. [2] show that recursive rules can be
converted to solving the transitive closure on the EDB relation, which is called as α operator.
For the query that “finds the common ancestor of Jim and Tom”, for example, we can get
the following relational algebra expression.

πpname(σname=J im(α(PARENT (x, y)))) ∩
πpname(σname=T om(α(PARENT (x, y))))

The following relational algebra expression can be used to solve the rule RA.

ANCESTOR(x, y) = PARENT(x, y) ∪ TC(PARENT(x, y))

= TC(PARENT(x, y))

Here TC is an operator of transitive closure, which solves the transitive closure on EDB
relation PARENT.

Yield index can be used to solve the transitive closure of the EDB relation. We use the
above example to show how Yield index can support solving transitive closure.

(1) Build Yield index for EDB relation PARENT
In order to build the Yield index of the relation PARENT, we need to build semantic

index that links PARENT itself, which means both the Root and Pointer of the index
locate on PARENT. We first build a data index on the attribute y of relation PARENT.
Then we name PARENT as an alias PARENT’(y,z). Using the tuples of PARENT’(y,z),
we can establish the semantic index between PARENT and PARENT’. Since PARENT’
is only an alias of PARENT logically, the index pointers to the tuples in PARENT’
actually point to the tuples in PARENT, which means that the semantic index connects
relation PARENT itself.

(2) Solve the transitive closure based on Yield index There have been a lot of transitive
closure algorithms based on graph theory, such as BTC [17], MEMTC [15] etc. The
aforementioned example can also be solved in the similar manner. We can consider
relation PARENT(x, y) as a graph G and the transitive closure on G can be derived
using Yield index. The data index entry in Yield index represents a vertex in the graph,
and semantic index represents the information of reachable edges from the vertex.
Yield index contains the information of adjacency table ofG, which enables us to calculate
its transitive closure efficiently. We briefly describe the algorithm steps as follows.

a) Traverse each entry of the data index in turn, and invoke Tarjan algorithm [35] to solve
all the strongly connected components on the graph G.

b) Compress the original graph. One strongly connected component is compressed into a
vertex so that graph G1 is constituted.

c) Derive the transitive closure based on the compressed G1.

5.4 Rules with negation

Consider a rule with negation as follows.

RN : q(x, y) : −p(x, y), ¬s(x, y)

Author's personal copy

World Wide Web

Here ¬s(x, y) is a predicate with negation. As known from the literature [36], a negation
operation in the rule body can be transferred to a set difference operation. The corresponding
relational algebra expression of rule RN is as follows.

Q(x, y) = P(x, y) − S(x, y)

Its semantic is that ∀t (x, y), t (x, y) ∈ P(x, y)∧ t (x, y) /∈ S(x, y). We call the relations with-
out ¬ operation and with ¬ operation as positive relation and negated relation respectively.

The original Yield index links the tuples between two relations P and S using the equal
values between join attributes. However, the set difference operation is solved for all tuples
of a relation. As a result, we have to establish the relationship of the tuples using tuple
equivalence. We thus introduce a new semantic index type TS to express the equivalence of
two tuples.

The lexical analysis mechanism of rules can easily identify whether a rule is with nega-
tion operation. Since set difference is to judge the equivalence for the tuples, Yield index
will establish data index for first attribute of the relations in rule body in order to quickly
locate arbitrary tuple in the relation. The data structure of semantic index remains the same,
but the meanings of some attributes are changed.

(Fire, Type, KEY, RuleName, Root, Pointer)

Here Type is TS. KEY is the value of attribute, which says that the tuples in corresponding
two relations are equal. It represents that tuple values are equal rather than the attribute
values are equal. The meanings of the other components remain the same.

Algorithm 8 Build the Index of Negation Rule

Input:
A Datalog rule RN :

A tuple t(x, y) of relation which will be inserted;

1: Insert t.x into the data index PB of relation

2: Search t.x in the data index SB of relation

3: if no found
4: Return; //There is no equivalent tuple of t(x, y) in the

5: else
6: Get the tuple s(x, y) from relation S according to the pointer;

7: if
8: Return; //There is no equivalent tuple of t(x, y) in the S
9: Construct a semantic index entry (T, TS, key, RN, XXX, YYY);

10: Insert the index entry (T, TS, key, RN, XXX, YYY) into semantic index;

Algorithm 8 describes how to update Yield index with negation rule when a tuple t is
inserted. The insertion of a tuple t (x, y) results in updating the corresponding to the entries
of data index and semantic index. First, we update the data index of relation P (line 1). Then
Key t.x is used to search the relation with negation (line 2). The search result is used to
judge whether the tuple t(x, y) is in relation S (lines 3-8). If there is the tuple t(x, y) in rela-
tion S, a semantic index entry (T, TS, key, RN, XXX, YYY) is constructed between relation P
and S (line 9). Here XXX and YYY are two pointers, which respectively point the tuples in
relation P and S. Finally, the semantic index entry (T, TS, key, RN, XXX, YYY) is insert into
the semantic index between relation P and S (line 10).

Author's personal copy

World Wide Web

Based on Yield index, we can easily solve the rules with negation since it is converted to
the operation of the set difference and the tuple equivalent information between the relations
of rule body has been stored in Yield index. Algorithm 9 describes how to solve a negation
rule based on Yield index. First, result set is set toNULL (line 1). Then we traverse all entries
of data index of positive relation (line 2). If MatchPointer of an entry is null, it represents
current tuple t(x, y) does not belong to relation with negation (line 3). The tuple t(x, y) is
added to result set (lines 4-5).

Algorithm 9 Solve the Rule with Negation Based on Yield Index

Input:
A Datalog rule RN :

Relations and

1: result = NULL; //result set is set to null

2: for each index entry e of ’s data index

3: if e.MatchPointer = NULL

4: Get tuple t(x, y) from P according to e.KeyPointer;

5: result = result t(x, y);

When a new tuple t(x, y) is inserted into the relation P, t.x is used to search the data index of
relation P. if not found, tuple t(x, y)will be stored in result set and Algorithms 8 is executed;
Otherwise, we judge whether the tuple t(x, y) belongs to relation with negation. If it is not
in the negated relation, t(x, y) is added in result set.

At the same time, Yield index with type TS can effectively support operations intersection
and union between the relations.

5.5 Activation on a set of rules

Yield index can be extended to support the activation of a set of rules. According to Ullman
et al. [36], a set of rules is regarded as a logic program. The semantic of a logic program
can be stored in a data dictionary. We can also use data dictionary to store the abstract
information of the rule’s Yield index. When the rule R is activated, we first search the
data dictionary to find the corresponding Yield index of the rule R and then perform rule
activation based on Yield index.

For the rules in a logic program, dependency exists between different IDB predicates. An
order for IDB predicates in a logic program can be derived based on their dependency, which
is further used to determine the order of solving the IDB predicates as well as solving the
rules. When a rule is solved, some tuples may be inserted into the relation, for example Q,
corresponding a rule head. The relationQmay be a predicate of the rule body in another rule
Ri . Therefore, solving a rule will result in updating the Yield index related to other rules,
and then activate another rule according to an order of IDB predicates. Both rule activation
and Yield index update alternate until all rules of the logic program are solved.

6 Evaluation

We implement Yield index on a Core 2, 2.66GHz computer with 16GB main memory and
evaluate it on various Datalog rules with different data-sets. Our aim is to answer the fol-
lowing questions: How does Yield Index (YI) compare with existing index structures in

Author's personal copy

World Wide Web

supporting rule activation? We select four baseline index structures, first-attribute-index
(FAI), which builds the index on the first attribute of each relation [10], all-attributed index,
which builds the index on all attributes of each relation [19, 27], AMEM index [24], and
filter index (FI) [5].

6.1 Time complexity

Let R0 be a rule which contains n relations, P1, · · · , Pn. Let Ni be the cardinality of relation
Pi and mij be the number of matching tuples between relations Pi and Pj .

We analyze the time complexity in Yield index according to the order of the P1, P2, P3,
· · · . Our main concern is the time complexity of accessing the index based on the tuple
matching probability between Pi and Pj .

Let Ni ≈ Nj = N and mij ≈ msl = m. The probability that a tuple of Pi matches any
tuple of Pj is as follows.

prij = mij

Ni

= m

N

6.1.1 Time complexity of rule body

The data index of Yield Index is a B+ tree of order f, the time complexity of which consists
of two parts, searching inside the node and searching along the B+ branches.

Log2f ∗ logf Ni = log2Ni

When a tuple t of Pi is inserted, the time complexity of rule activation, T , is the sum of
searching the data index, T1, and accessing the semantic index, T2, of Yield index.

The time complexity of accessing the data index is as follows.

T1 = log2N1 + log2N2 ∗ m12

N1
+ log2N3 ∗ m12

N1
∗ m23

N2
+ · · ·

=
n−1∑

i=0

log2Ni+1 ∗
(

mi,i+1

Ni

)i

≈
n−1∑

i=0

log2N ∗
(m

N

)i

= log2N ∗
n−1∑

i=0

(m

N

)i

= log2N ∗
(
1 − (m

N
)n

1 − m
N

)

≈ log2N ∗
(

1

1 − m
N

)
∵ m � N ∴

(m

N

)n � 1

= log2N ∗
(

N

N − m

)

≈ O

(
log2N ∗ N

N − m

)

Author's personal copy

World Wide Web

Semantic index directly connects the matching tuples of different relations, which
enables a constant time to locate the matching tuples of a tuple. As a result, the time
complexity of accessing the semantic index is as follows.

T2 =
n−1∑

i=1

mij i ∈ [1,2,...,n-1], j = j + 1

≈
n−1∑

i=1

m ≈ O(n ∗ m)

Therefore,

T (N) = T1(N) + T2(N)

≈ O

(
N

N − m
∗ log2N + n ∗ m

)
m � N

Obviously, the less the matching tuples between the relations of rule body are, the higher
the efficiency of YI index is. And the more the number of relations in rule body is the more
obvious the efficiency of YI index is.

6.1.2 Time complexity of join

Yield index can effectively support the join operation since Yield index contains all match-
ing tuples among the relations. If we know the join operation among the relations in
advance, we can extend SQL statement to build Yield index, which is used to store all
matching tuples on specified attributes in the relations. When a SQL statement executes a
join operation with Yield index, it will find corresponding semantic index YI-SI (a subset of
semantic index), directly locate the tuples in different relations through scanning all entries
of YI-SI, and complete the join operation.

The time complexity of join operation between two relations is as follows.

T (n) = O(m)

Here m is the number of matching tuples between two relations. In general, m is far less
than N which is the number of tuples in the relations.

6.1.3 Time complexity of negation rule

Known from Section 5.4, a negation operation is converted to a operation of set difference.
For a rule with negation, for example rule RN in Section 5.4, we can use type TS to build
Yield index. Its time complexity consists of two parts: one is to scan all the tuples in positive
relation P and another is to deal with semantic index. Because the data index of relation P
includes the keys of all tuples, we in turn scan all leaf nodes in data index of relation P.

T1(n) = O(N)

Based on Yield index with type TS, there is the relationship of the tuple equivalence
between the data index and semantic index. Each index entry in data index of relation P
make clear whether a tuple in P is also in the relation S. So, the time complexity of dealing
with semantic index is as follows.

T2(n) = O(m)

Author's personal copy

World Wide Web

Therefore, the time complexity of negation operation is:

T (n) = O(N) + O(m) = O(N + m)

6.2 Experiment setup

Evaluated Datalog rules.We use fourDatalog rules to evaluate the effectiveness of YI. The
rules are representative since they cover different scenarios and different constraint types
between the relations.

1) Requesting channel problem [29]

UC : canusechannel(x, y) : −near(x, z), use(x, z), request (z, y)

Assume that there are many wireless devices in a large Mall. People request access to and
uses a channel through some devices such as mobile phone. People keep on moving, close
to or leave the wireless device. But only part of people that register and close to a device
can access and use the channel.

This rule says that a person x can use a channel y if x is near a wireless device z, x can
use the z, and z requests the channel y. Tuples in relations NEAR, USE and REQUEST are
randomly generated using 500,000 distinguished values. We generate two data sets in which
one contains 50,000 tuples and the other contains 100,000 tuples, denoted by UCs and UCl ,
respectively.

2) Coordinated flight booking problem [13]

CF : reserve(T om, y) : −f riend(s, x), city(s, c), city(x, c), ticket (x, y), s = T om

This rule is proposed by Gupta et al. to find a flight that a person can book with his/her
friends simultaneously. The rule says that Tom will book a flight y if x is a friend of Tom,
both x and Tom live in a city c, and x books a flight y. Tuples in the relations are randomly
generated using 100,000 person names, 1,000 city names and 100 flights. We generate two
data sets, one with 50,000 tuples in each relation, and another with 100,000 tuples in each
relation, which are denoted as CFs and CFl , respectively.

3) WSN routing problem [9]

RT : path(x, y) : −link(x, y), located(x)

This rule is proposed by Chu et al. to establish routing paths between WSN nodes. The
rule says that a routing path is from node x to node y if there is a media-level link from
node x to node y and the link information is stored on node x. Tuples in the relations are
randomly generated using 20,000 node names. We generate two data sets, one with 50,000
tuples in each relation, and another with 100,000 tuples in each relation, which are denoted
as RTs and RTl , respectively.

4) Directly Graph problem [36]

RG : (1)path(x, y):− arc(x, y)

(2)path(x, y):− arc(x, z), path(z, y)

This is a recursive rule, which is used to test the efficiency of the recursive rule. Rule (1)
says that there is a path from vertex x to y if there is an arc (directly edge) from vertex x to
y. Rule (2) shows that there is a path from vertex x to y if there are an arc from vertex x to z
and a path from vertex z to y.

Author's personal copy

World Wide Web

Relation ARC is an EDB relation. The tuples in relation ARC are randomly generated
using 3,000 different vertices. We select the 200 vertices from 3,000 vertices as the vertices
with out-degree and respectively construct the directed graphs with different sizes. The
number of tuples in relation ARC are 6,000, 8,000, 10,000, 12,000 and 15,000 respectively,
which correspond five test data sets, RG1, RG2, RG3, RG4 and RG5.

Configurations Our major concern is the effectiveness and overhead of the index struc-
tures. Regarding effectiveness, we compare the time cost of performing rule activation on
the rules with the support of different index structures. We perform rule activation on the
aforementioned data sets, in which all tuples are already stored in the relations. We also
perform rule activation under the situation that tuples are continuously inserted into the
relations, which is common for applications in dynamic and pervasive environment. In rule
UC, we use 50% of tuples in relation NEAR as inserted tuples. In rule CF , we use 50% of
tuples in relation TICKET as inserted tuples. In rule RT , we use 50% of tuples in relation
LINK as inserted tuples. Regarding overhead, we compare the time and space cost to build
the different index structures.

Measurements We use B+ tree in main memory as the data index of Yield index. All tests
of various index structures are executed on main memory. Since the time cost is closely
related to the implementation of index structure, we use index access times(#), the number
of index accesses, and tuple access times(#), the number of tuple accesses, to measure the
time cost of rule activation supported by different index structures. Concerning the time cost
in index construction, we use index entry access times(#) as the metrics, since time of index
access may be different when the index size increases. For testing on the recursive rule,
beside the index entry access times, we also compare the entire processing time (time(ms))
of Yield index with semi-naive algorithm on each data sets.

6.3 Result analysis

6.3.1 Rule activation on base relations

Table 1 gives an overview of rule activation. The result shows that rule activation is
extremely time-consuming without index support. YI has the smallest index access times as
well as tuple access times among the five index structures. AAI performs better than FAI and
FI performs better than AMEM. In the following discussion, we focus on the three index
structures, AAI, FI and YI, since AAI and FI are based on FAI and AMEM, respectively.

Figure 12 gives a comparison of AAI , FI , and YI on index access times. YI performs
better than other two index structures, 2.1%−67.8% less than AAI and 7.7%−70.5% less
than FI . Since rule activation has to access index entries for each tuple at least one time, the
effect of avoiding ineffective rule activation is not obvious. As a result, the difference among
YI and other methods is comparatively small, but it is sufficient to show the outperforming
of YI on this metrics.

Figure 13 shows a comparison of AAI , FI , and YI on tuple access times. The perfor-
mance of YI is much better than the other methods, decreasing the one order of magnitude
on average. YI never wastes any tuple access since every tuple access indicates a successful
rule activation. We notice that FI performs nearly as well as YI in rule CF . This is proba-
bly because FI is effective for selective constant constraint, such as relation CITY(Tom, x)
in CF .

Author's personal copy

World Wide Web

Table 1 Comparison of the index/tuple access number in rule activation

Index Structure Access Target UC s UC l CF s CF l RT s RT l

No Index index 0 0 0 0 0 0

tuple 1.25E+14 1E+15 1.25E+14 1E+15 2.50E+09 1E+10

FAI index 50,126 108,327 53,224 153,556 89,359 190,723

tuple 1.19E+14 4.90E+13 52,183 145,428 65,994 147,498

AAI index 55,277 123,790 51,114 141,917 74,305 147,017

tuple 55,277 123,790 51,115 131,786 63,294 132,743

AMEM index 0 0 63,657 124,248 52,634 104,274

tuple 1.25E+14 1E+15 6.80E+06 2.48E+07 1.32E+08 4.27E+08

FI index 55,277 123,790 73,756 174,248 79,355 160,715

tuple 55,277 123,790 117 342 60,564 32,282

YI index 51,026 108,327 50,086 100,268 52,634 104,274

tuple 1,026 8,327 34 106 2,634 4,274

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

UC_s UC_l CF_s CF_l RT_s RT_l
Rules

AAI FI YI
Index access
�mes(#)

Figure 12 Index Access Times of AAI , FI , and YI on Base Relation

117 342
1026

8327
34 106 2634 4274

0

20000

40000

60000

80000

100000

120000

140000

UC_s UC_l CF_s CF_l RT_s RT_l
Rules

AAI FI YI
Tuple access
�mes(#)

Figure 13 Tuple Access Times of AAI , FI , and YI on Base Relation

Author's personal copy

World Wide Web

Figure 14 Index Access Times of AAI , FI , and YI on Inserted Tuples

6.3.2 Rule activation for inserted tuples

One of YI ’s advantages is integrating tuple insertion and rule activation. For existing meth-
ods, rule activation for inserted tuples includes two steps, updating the index and performing
rule activation. However, YI only takes one step. When we update the index structure, rule
activation is performed as shifting semantic index. Figures 14 and 15 show the result of rule
activation on inserted tuples. Apparently, YI performs the best. It has 3.9% − 36.5% less
index access times than AAI , 7.7% − 42.5% less than FI . Regarding tuple access times,
YI is 93.3% − 99.91% less than AAI and 44.1% − 98.7% less than FI .

6.3.3 Construction efficiency and space overhead

YI performs well in rule activation efficiency, but we have to show that the time and space
overhead of YI is affordable. The cost to build an index contributes the major time overhead
of an index structure. Figure 16(a) to (f) show index access times during the index construc-
tion. Besides the above three index structures, we give a separate measurement on the semantic
index(YI SI) in YI. The result shows that the major overhead of YI is the construction of the
data index, namely the construction of B+ tree. The construction of the semantic index in

Figure 15 Tuple Access Times of AAI , FI , and YI on Inserted Tuples

Author's personal copy

World Wide Web

Figure 16 Index Access Times During Construction

YI brings a much smaller overhead. The performance of YI varies a lot for different rules.
In the test sets of rule UC, which has a multi-variable constraint, YI spends lots of time to
build the data index. In the test sets of rule CF, YI performs much better, which is nearly as
the same as FAI. In the test sets of rule RT, which has a highly selective constant constraint,
the overhead of YI drops dramatically, just a litter larger than the overhead of FI. However,
unlike FI, the major overhead of YI is actually overtaken by all rules that share the same
predicates.

Another issue of index overhead is the size of index file. Figure 17 shows the num-
ber of index entries of AAI, FI and YI. YI and FI are better than other index structures
in most tests. However, the major part of overhead in YI is shared by different rules,
while FI is a rule-specific method. YI does not bring more overhead than other meth-
ods in terms of time and space. Considering the overhead and rule activation efficiency,
we conclude that Yield index can support efficiently the rule activation with affordable
overhead.

0

100000

200000

300000

400000

500000

600000

700000

UC_s UC_l CF_s CF_l RT_s RT_l
Rules

AAI FI YI
Index access
�mes(#)

Figure 17 Comparison of the Number of Index Entries

Author's personal copy

World Wide Web

9114957
13719078

17679627
20445309

27557721

108000
144000

180000

216000

270000

0

50000

100000

150000

200000

250000

300000

0

5000000

10000000

15000000

20000000

25000000

30000000

RG1 RG2 RG3 RG4 RG5
Data Sets

Semi-naive YI
Index entry
access imes(#)

Index entry
access imes(#)

Figure 18 Comparison of the Number of Index Entries

6.3.4 Comparison with semi-naive algorithm

In order to validate the efficiency of the recursive rule, we compare the performance of Yield
index with semi-naive algorithm [36], and measure the processing time and index entry
access times of both methods. For semi-naive algorithm, we build B+ tree index to search
the wanted tuples efficiently. Figure 18 compares the index entry accessing times between
Yield index and semi-naive algorithm. Yield index greatly reduces the index entry accessing
times in all five data sets, and it achieves an average two order of magnitude improvement in
efficiency. Since both two approaches use B+ tree as the basic data structure, Yield index’s
advantage is due to its semantic index that links the matching tuples and dummy tuples
directly.

Figure 19 shows the execution time of Yield index and semi-naive algorithm. Yield index
is 1,506-4,115 times faster than semi-naive algorithm on the five test data sets. The main rea-
son is that our approach is first to find the strongly connected components and then to solve
the recursive rule on the basis of strongly connected components. Yield index improves the
efficiency of solving the recursive rule since it can effectively support the solution of the
strongly connected components and transitive closure. We also notice that Yield index’s
leading in execution time is much larger than its leading in index entry access times. We
believe that this difference shows that besides the proposed semantic index, Yield index also
uses the information acquired from the data index in a more effective manner.

36667.36
62318.14

82901.04

151723.97

207572.34

24.35
28.78 27.83 34.58

50.43

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0.00

50000.00

100000.00

150000.00

200000.00

250000.00

RG1 RG2 RG3 RG4 RG5
Data Sets

Semi-naive YITime(ms) Time(ms)

Figure 19 Comparison of running time

Author's personal copy

World Wide Web

7 Related work

Rule activation has been extensively studied for decades. Reference [33] lists three prevail-
ing rule activation techniques in principle, brute force, the discrimination networks [11, 24],
and marking method [32, 34]. The discrimination networks are proposed by researchers in
A.I. community, in which rules, predicates, and tuples are connected through a network that
can assist the activation of rules. Rete [11] adopts a rule-centric fashion, which uses the
rules to construct a network that efficiently locates tuples based on the constant constraints
between rules and tuples. TREAT [24] uses a tuple-centric fashion to record all potential use-
ful tuples in a network. Our rule activation method is similar with discrimination networks,
in which Yield index connects the matching tuples through its semantic index. However,
Yield index organizes its semantics index based on data index, which can be updated in a
more effective manner and brings much lower space overhead.

Marking method can be view as a primitive form of specific index structure that supports
rule activation. References [34] and [32] use some well-designed records to keep track of
tuples that may be involved in rule activation. Since the records are less-structured, marking
method performs worse than the specific index structures.

A well-chosen index may mean the difference between hours and a few seconds in rule
activation [20]. In most systems, conventional index structure is directly applied to the rule
mechanism. Some systems use a brute force method, which builds the index on predefined
attributes of EDB relations. DLV [10] builds an index on the first attribute of each EDB
relation. Jena [19] andOWLIM [27] build the indices on each attribute of each EDB relation.
Other systems determine the KEY of the index through analyzing the activation rule, such
as Ontobroker [26] and Yap [39]. XSB provides a more flexible index mechanism [30].

Some works use specific index structure to support rule activation. LEAPS [25] uses
AMEM index to record the static part of extensional databases, which is bound by
the constant constraints of the rules. The similar technique is used in Ariel System
[14]. As an improved version of LEAPS, DATEX [5] presents FI index structure, Filter
Index, which mixes the idea of TREAT with the marking method. In DATEX, the con-
stant constraints, like S.$1=3, are used to build the AMEM index in the same way as
LEAPS. Meanwhile, the semantic information of variable constraint, e.g., S.$2 = T .$1,
is expressed by FI index, which records all tuples with the same value on the equivalent
arguments.

All above index structures, either conventional or specific, improve the efficiency of rule
activation through quickly locating the matching tuples in each relation. These indices are
built on the EDB relations separately, and a well-design algorithm is applied to solve the
rules. But they provide little information about the rule’s semantics, especially the semantic
constraint information between the body predicates that shapes matching tuples among the
relations. These structures cannot tell whether an inserted tuple has matching tuples without
performing activation algorithm. As a result, these index structures suffer from ineffec-
tive invoking. Facing the dynamic and interactive nature of current applications, frequent
ineffective invoking is one of the major causes of rule activation’s poor-efficiency.

Segev et al. [31] propose a join pattern indexing that records both complete and incom-
plete join information of base relations for rule activation. The recorded join information for
join pattern index is similar with the semantic index of Yield index, but the join pattern index
is built as an independent relation, which makes its updating less efficient. In Yield index,
we build the semantic index based on the data index and use dummy index to update existed
semantic index in a much more efficient manner. Meanwhile, Yield index also provides the
navigation among the relations, which is the basis of solving a recursive rule.

Author's personal copy

World Wide Web

Wang et al. [37] introduce belief rules as an extension to traditional ‘If-THEN’ rules
which is the form of ‘If P THEN Q’. The consequent (Q) is believed to be 100% true given
that the antecedent (P) has happened. Previous research has shown that such strict knowl-
edge representation scheme leaves no room for uncertain or incomplete judgements [1].
In recent years, the rule activation is also discussed in Belief Rule Bases. Some researches
focus on an advanced belief rule-based decision model and propose a dynamic rule activa-
tion (DRA) method to address data incompleteness and inconsistency issues in data-driven
decision models [3, 7], in which the activated rules are selected in a dynamic way to search
for a balance between the incompleteness and inconsistency. But the rules used in these
pieces of works are not a kind of Datalog rules.

Some pieces of work focus on the computational complexity of Datalog-like logic pro-
grams. Liu et al. [21] propose a method for transforming any set of Datalog rules into an
efficient specialized implementation with guaranteed worst-case time and space complex-
ities. Calvanese et al. [6] present algorithms for handling usual reasoning tasks, as well as
answering the unions of conjunctive queries, on the proposed family of description logics.
Their works and our work are complementary, since Yield Index improves the efficiency
of answering a single Datalog rule at implementation level, while their works improve the
efficiency of answering a set of Datalog rule at query-planning level.

The intuition of the extended semantic index, InequalityS, is similar to the work on the
region monitoring query(RMQ) [8, 16]. The difference is that our inequality constraint not
only concerns about the evaluation of region query, but also focuses on how to link the
query result with other matching tuples to generate the matching tuple set of the rule. As a
result, the semantic index of Yield index can connects the matching tuples and support rule
activation directly.

In other research areas, the rule activation is also discussed. Mandl et al. [23] discuss the
multi-context systems with activation rules. If an activation rule is fired, its context is active
and shall be taken into account. If a context is not activated by any activation rule, it is not
considered. But the efficiency of the rule activation is not discussed.

8 Conclusion

The application scenarios of dynamic and pervasive computing environment, in which
the system will interact with the environment intensively, request high efficiency of logic
programming. In the face of the poor-efficiency of rule activation, we propose an index
structure, Yield index, to support rule activation effectively. The index mechanism sets up
the data index and semantic index for constraint elements in rules to contain the information
of rule semantics and tuple matching between the relations. Our approach integrates tuple
insertion and rule activation to avoid ineffective invoking of rule activation. The article intro-
duces the index structure of Yield index, the construction and maintenance algorithms, as
well as the activation algorithm. We also discuss the good extensibility of Yield index. The
experimental results show that Yield index has better performance and improves activation
efficiency of one order of magnitude, comparing with other index structures. Yield index
is suitable for application scenarios with frequent interaction in dynamic and pervasive
computing environment.

Acknowledgments This work was supported by National Natural Science Foundation of China(Grant Nos.
91318301, 61073031, 61321491, 61373011 and 61772258).

Author's personal copy

World Wide Web

References

1. AbuDahab, K., Xu, D., Chen, Y.: A new belief rule base knowledge representation scheme and inference
methodology using the evidential reasoning rule for evidence combination. Expert Syst. Appl. 51, 218–
230 (2016)

2. Agrawal, R.: Alpha: an extension of relational algebra to express a class of recursive queries. IEEE
Trans. Softw. Eng. 14, 879–885 (1988)

3. Alberto, C., Liu, J., Wang, H., Kashyap, A.: A new dynamic rule activation for extended belief rule
bases. Proc. Int. Conf. Mach. Learn. Cybern. 18, 1836–1841 (2013)

4. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathanf, A., Riboni, D.: A
survey of context modelling and reasoning techniques. Perv. Mob. Comput. 6(2), 161–180 (2010)

5. Brant, D.A., Miranker, D.P.: Index support for rule activation. In: Proceedings of the 1993 ACM SIG-
MOD International Conference on Management of Data(SIGMOD,’93), pp. 42–48. Washington, D.C.
(1993)

6. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient
query answering in description logics: The dl-lite family. J. Autom. Reason. 39(3), 385–429 (2007)

7. Calzada, A., Liu, J., Wang, H., Kashyap, A.: A new dynamic rule activation method for extended belief
rule-based systems. ACM Trans. Knowl. Data Eng. 27, 880–893 (2015)

8. Chandrasekaran, S., Franklin, M.J.: Psoup: A system for streaming queries over streaming data. VLDB
J. 12, 140–156 (2003)

9. Chu, D., Popa, L., Tavakoli, A., Hellerstein, J.M., Levis, P., Shenker, S., Stoica, I.: The design and imple-
mentation of a declarative sensor network system. In: Proceedings of the 5th International Conference
on Embedded Networked Sensor Systems (SenSys’07), pp. 175–188. Sydney (2007)

10. Dlv: [Online]. Available: http://www.dbai.tuwien.ac.ar/proj/dlv/
11. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem. Artif. Intell.

19(1), 17–37 (1982)
12. Gu, T., Pung, H., Zhang, D.: Toward an osgi-based infrastructure for context-aware applications. Perva.

Comput. IEEE 3(4), 66–74 (2004)
13. Gupta, N., Kot, L., Roy, S., Bender, G., Gehrke, J., Koch, C.: Entangled queries: enabling declara-

tive data-driven coordination. In: Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data (SIGMOD’11), pp. 673–684. Athens (2011)

14. Hanson, E.: The design and implementation of the ariel active database rule system. IEEE Trans. Knowl.
Data Eng. 8(1), 157–172 (1996)

15. Hirvisalo, V., Nuutila, E., Soisalon-Soininen, E.: Transitive closure algorithmmemtc and its performance
analysis. Discret. Appl. Math. 110, 77–84 (2001)

16. Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring continuous spatial queries over mov-
ing objects. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of
Data(SIGMOD,’05), pp. 479–490. Baltimore (2005)

17. Ioannidis, Y., Ramakrishnan, R., Winger, L.: Transitive closure algorithms based on graph traversal.
ACM Trans. Database Syst. 18, 512–576 (1993)

18. Jagadish, H.V., Agrawal, R., Ness, L.: A study of transitive closure as a recursion mechanism. In Pro-
ceedings of the 1987 ACM SIGMOD International Conference on Management of Data (SIGMOD’87)
(1987)

19. Jena: [Online]. Available: http://www.jena.sourceforge.net/
20. Liang, S., Fodor, P., Wan, H., Kifer, M.: Openrulebench: an analysis of the performance of rule engines.

In: Proceedings of the 18th International Conference on World wide Web (WWW’09), pp. 601–610.
Madrid (2009)

21. Liu, Y.A., Stoller, S.D.: From datalog rules to efficient programs with time and space guarantees. ACM
Trans. Program. Lang. Syst. 31(6), 1–38 (2009)

22. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis, P., Ramakrishnan, R.,
Roscoe, T., Stoica, I.: Declarative networking: language, execution and optimization. In: Proceedings of
the 2006 ACM SIGMOD International Conference on Management of Data(SIGMOD’06), pp. 97–108.
Chicago (2006)

23. Mandl, S., Ludwig, B.: Multi-context systems with activation rules. In: Proceedings of the 33rd Annual
German Conference on AI, LNAI vol. 6359, pp. 135–142. Karlsruhe (2010)

24. Miranker, D.P.: Treat: a better match algorithm for ai production systems. In: Proceedings of the Sixth
National Conference on Artifical Intelligence (AAAI’87), pp. 42–47. Seattle (1987)

25. Miranker, D., Lofaso, B.: The organization and performance of a treat-based production system compiler.
IEEE Trans. Knowl. Data Eng. 3(1), 3–10 (1991)

26. Ontobroker: [Online]. Available: http://www.ontoprise.de/de/en/home/products.html/

Author's personal copy

http://www.dbai.tuwien.ac.ar/proj/dlv/
http://www.jena.sourceforge.net/
http://www.ontoprise.de/de/en/home/products.html/

World Wide Web

27. Owlim: [Online]. Available: http://www.ontotext.com/owlim/index.html/
28. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of

things: A survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2014)
29. Perttunen, M., Riekki, J., Lassila, O.: Context representation and reasoning in pervasive computing: A

review. Int. J. Multimed. Ubiq. Eng. 4(4), 1–28 (2009)
30. Sagonas, K., Swift, T., Warren, D.S.: Xsb as an efficient deductive database engine. In: Proceedings of

the 1994 ACM SIGMOD International Conference on Management of Data(SIGMOD,’94), pp. 442–
453. Minneapolis (1994)

31. Segev, A., Zhao, J.: Rule activation techniques in database systems. J. Intell. Inf. Syst. 7, 173–194 (1996)
32. Sellis, T., Lin, C.C., Raschid, L.: Implementing large production systems in a dbms environment:

Concepts and algorithms. In: Proceedings of the 1988 ACM SIGMOD International Conference on
Management of Data(SIGMOD’88), pp. 404–423. Chicago (1988)

33. Stonebraker, M.: The integration of rule systems and database systems. IEEE Trans. Knowl. Data Eng.
4(5), 415–423 (1992)

34. Stonebraker, M., Jhingran, A., Goh, J., Potamianos, S.: On rules, procedure, caching and views in data
base systems. In: Proceedings of the 1990 ACM SIGMOD International Conference on Management of
Data(SIGMOD,’90), pp. 281–290. Atlantic City (1990)

35. Tarjan, R.: Depth first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)
36. Ullman, J.D.: Principles of Database and Knowledge-base Systems, vol. I. Computer Science Press Inc.,

New York (1988)
37. Wang, Y.M., Yang, J.B., Xu, D.L.: Environmental impact assessment using the evidential reasoning

approach. Eur. J. Oper. Res. 174, 1885–1913 (2006)
38. Wolfson, O., Silberschatz, A.: Distributed processing of logic programs. In: Proceedings of the 1988

ACM SIGMOD International Conference on Management of Data (SIGMOD,’88), pp. 329–336.
Chicago (1988)

39. Yap: [Online]. Available: http://www.dcc.fc.up.pt/vsc/Yap/
40. Zhang, W., Yu, C.T.: A necessary condition for a doubly recursive rule to be equivalent to a linear

recursive rule. In: Proceedings of the 1987 ACM SIGMOD International Conference on Management of
Data (SIGMOD’87). San Francisco (1987)

Author's personal copy

http://www.ontotext.com/owlim/index.html/
http://www.dcc.fc.up.pt/ vsc/Yap/

	An index structure supporting rule activation in pervasive applications
	Abstract
	Introduction
	Motivation
	Yield index
	Constraint elements
	An overview of yield index
	Constraint decomposition
	Multi-variable constraint
	Position of dummy tuple

	Implementation of yield index
	Index construction
	Data index construction
	Semantic index construction

	Index maintenance
	Tuple insertion
	Tuple deletion

	Rule activation using yield index

	Optimization and extension
	Further optimization
	Extensibility of yield index
	Extension on inequality constraint
	Yield index with Snlog

	Recursive rule with yield index
	Rules with negation
	Activation on a set of rules

	Evaluation
	Time complexity
	Time complexity of rule body
	Time complexity of join
	Time complexity of negation rule

	Experiment setup
	Configurations
	Measurements

	Result analysis
	Rule activation on base relations
	Rule activation for inserted tuples
	Construction efficiency and space overhead
	Comparison with semi-naive algorithm

	Related work
	Conclusion
	Acknowledgments
	References

