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Abstract—Machine learning (ML) programs are being widely
used in various human-related applications. However, their test-
ing always remains to be a challenging problem, and one can
hardly decide whether and how the existing knowledge extracted
from training scenarios suit new scenarios. Existing approaches
typically have restricted usages due to their assumptions on the
availability of an oracle, comparable implementation, or manual
inspection efforts. We solve this problem by proposing a novel
program synthesis based approach, SynEva, that can systemat-
ically construct an oracle-alike mirror program for similarity
measurement, and automatically compare it with the existing
knowledge on new scenarios to decide how the knowledge suits
the new scenarios. SynEva is lightweight and fully automated.
Our experimental evaluation with real-world data sets validates
SynEva’s effectiveness by strong correlation and little overhead
results. We expect that SynEva can apply to, and help evaluate,
more ML programs for new scenarios.

Index Terms—Machine learning, program synthesis, mirror
program, similarity measurement.

I. INTRODUCTION

Machine learning (ML) is gaining increasing popularity

nowadays. Various ML applications are developed for diverse

tasks, including self-driving vehicle [1], recommendation sys-

tem [2], social network analysis [3], image classification [4],

and natural language processing [5]. Generally, such appli-

cations follow a similar workflow: (1) extracting knowledge

from existing scenarios (a.k.a., training scenarios), and (2)

then using the extracted knowledge in new scenarios (a.k.a.,

predicting scenarios). However, such extracted knowledge

may not always work in predicting scenarios, if they differ

substantially from training scenarios. In this case, undesirable

consequences [6] can occur. For example, a Knightscope K5

security robot recently drowns itself into a fountain, because

its predicting scenario is water surface, quite different from its

training scenarios of road surfaces [8].

Regarding this, an important question is: “how does one
decide whether the knowledge extracted from training sce-
narios still suits predicting scenarios?” Knowing the answer,

one can then decide to use such extracted knowledge reliably

for predicting scenarios, or need to take additional training to

improve the knowledge for predicting scenarios.

One straightforward approach is to examine the performance

of the extracted knowledge directly in predicting scenarios,
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i.e., examining whether the performance is satisfactory from

the point of view of its users. Typically, to obtain satisfactory

performance, there are two ways: (1) restricting predicting

scenarios equal to training scenarios, and (2) validating the

performance for predicting scenarios by human users. For (1),

it brings heavy restrictions and may not be possible. This

is because predicting scenarios typically refer to practical

environments, usually more complex and sometimes quite

different, as compared to training scenarios, which commonly

refer to laboratory environments or contain only partial prac-

tical data. For (2), manual validation is inevitable and this

process can be time-consuming and error-prone. Its underlying

reason is the lack of oracle (i.e., an automated mechanism that

can accurately tell what the expected result is given any input).

One example is the expected driving action by human drivers

given any scenario in front of a vehicle. Only human drivers

know what to do in their minds.

To address the lack-of-oracle problem, another approach

is to deploy differential testing. Differential testing has been

widely used to alleviate the oracle problem [9], [10]. It, rather

than referring to the oracle for predicting scenarios that may

not be available, instead compares the outputs of different

implementations for the same specification/requirement (e.g.,

multiple trained models for self-driving vehicles) to find out

their behavioral differences when facing the same inputs [11].

Then any difference can potentially disclose latent problems

in the knowledge under examination. However, differential

testing assumes the availability of multiple implementations,

which may not always be available in practice, and even if they

are available, they may not follow exactly the same specifica-

tion/requirement. Then the disclosed problems could be simply

differences in features among these implementations. Besides,

such behavioral differences still require manual analysis for

a decision. For example, in a self-driving vehicle application,

the difference of “30 degrees to right” vs. “32 degrees to right”

can hardly be decided to be significant or not automatically.

As such, answering our earlier question requires new

research efforts. We conjecture that a desirable approach

should: (1) not rely on the oracle for predicting scenarios,

(2) not require multiple implementations for the same speci-

fication/requirement, and (3) not involve manual efforts.

In this paper, we present a novel approach, SynEva, to meet

the preceding three requirements, such that it can automati-
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cally decide how previous knowledge extracted from training

scenarios (e.g., trained model) suits predicting scenarios. To

our best knowledge, SynEva, is the first approach to address

this problem without relying on any oracle, existing imple-

mentation, or manual effort. Our key insight behind SynEva

is that, it constructs an oracle-alike structure (named mirror)

with respect to the existing knowledge, such that the mirror

and existing knowledge behave almost exactly the same on the

training scenarios but do not have any guarantee on predicting

scenarios. Then if the mirror and existing knowledge behave

similarly on predicting scenarios, one can decide that the

knowledge can also work satisfactorily on predicting scenarios.

Otherwise, they behave quite differently, and one can decide

that the knowledge will not work satisfactorily on predicting

scenarios. By doing so, SynEva transforms the challenging

problem into an easy one of deciding whether the existing

knowledge behaves similarly on predicting scenarios as the

mirror, which can be constructed automatically.

The key challenge of SynEva is how to automatically

generate a mirror for existing knowledge, such that the mirror

and knowledge behave almost exactly the same on training

scenarios, i.e., the mirror can represent the existing knowledge

on training scenarios. SynEva addresses this challenges by

program synthesis techniques [12], [13], which systematically

explore the behavior of existing knowledge on training scenar-

ios and construct a program to mimic the behavior. SynEva

makes this process fully automated, and the constructed mirror

program can behave as closely to the existing knowledge as

possible. This makes that SynEva does not have to rely on any

oracle or existing implementation.

With the constructed mirror program, SynEva can then

decide how the previously extracted knowledge from train-

ing scenarios suits new predicting scenarios. To evaluate its

effectiveness, we applied SynEva to the K-means clustering

algorithm [14] with its five program variants of different

settings on four real-world data sets of various sizes. Our

experimental results show that SynEva effectively evaluated

how the existing knowledge extracted from training scenarios

suits predicting scenarios, with a strong correlation (−0.81)

with the oracle (i.e., actual suiting extents). Besides, the results

also show that SynEva’s key design, i.e., synthesizing mirror

programs by incorporating every detail from the extracted

knowledge, directly contributed to its effectiveness, which

brings a much stronger correlation as compared to some

straightforward design, e.g., simulating the overall behavior

of the extracted knowledge. Moreover, SynEva incurred very

little overhead, no more than 5.1 seconds for its whole

synthesis and evaluation process, suggesting its practicability.

In summary, this paper makes the following contributions:

• Proposed a program synthesis technique to systematically

construct an oracle-alike mirror program with respect to

the knowledge extracted from training scenarios.

• Proposed a similarity measurement technique to decide

how existing knowledge for training scenarios suits new

scenarios based on the mirror program’s performance.

• Evaluated the SynEva approach with ML applications on

real-world data sets.

The remainder of this paper is organized as follows. Section

II introduces background of machine learning and program

synthesis techniques. Section III elaborates on our SynEva ap-

proach, including a program synthesis technique for construct-

ing mirror programs and a similarity measurement technique

for evaluating how existing knowledge suits new scenarios.

Section IV experimentally evaluates SynEva’s performance

with ML applications with real-world data sets. Section V

discusses related work in recent years, and finally Section VI

concludes this paper.

II. BACKGROUNDS

In this section, we introduce some background knowledge

about machine learning and program synthesis techniques.

A. Machine Learning (ML)
Typically, ML programs extract knowledge from training

scenarios in terms of trained models (e.g., trees, networks,

and other graphs), and then use them in new scenarios for

various applications.
A training instance denotes one line of data from training

scenarios. It consists of a sequence of features (e.g., weather

condition, road condition, and driving speed of a vehicle) and

a corresponding label specifying what category this instance

should be classified into (e.g., a suggested next action for self-

driving). It can be represented as <f1, f2, . . ., fm, label>.

Each fi denotes a specific feature value (e.g., “rainy” for the

“weather condition” feature) and label denotes its category

(e.g., “braking”).
A predicting instance denotes one line of data from predict-

ing scenarios. It consists of a sequence of features only, wait-

ing for predicting its corresponding label. It can be represented

as <f1, f2, . . ., fm>. Then, based on the knowledge extracted

from training scenarios, each predicting instance can find its

corresponding label. This process is known as classification.

A good ML algorithm is expected to have a high classification

accuracy.
Within the scope of this paper, the ML programs/algorithms

we refer to are such classification-based ones. Besides, their

processes rely on labels, and thus they belong to supervised

learning. For ease of presentation, we in subsequent discus-

sions directly name them ML programs when there is no

ambiguity.

B. Program Synthesis
Program synthesis aims to automatically construct a pro-

gram satisfying a given correctness specification [15], [16]. It

can be inductive or deductive. Inductive synthesis constructs

a program based on a finite set of execution instances from

the specification, and solves the construction problem by

finite space searching [17]. Deductive synthesis constructs a

program by directly refining the given specification [13].
In this paper, we use inductive program synthesis. It requests

for a infinite set of execution instances or input-output exam-

ples [18], [19], without requiring any formal specification.
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Fig. 1. SynEva overview.

Formally, the inductive program synthesis is as follows:

Problem. Inductive program synthesis
Given: (1) A set of inputs I, and (2) a set of corresponding

outputs O;

To find: A program P , such that when P takes any input
from I, it returns the corresponding output in O.

In the following, we refer to inductive program synthesis by

program synthesis for ease of presentation. It well suites ML

programs since they typically come with plenty of examples

for training.

III. THE SYNEVA APPROACH

In this section, we give our SynEva approach. We first give

an overview of the whole approach, and then elaborate on the

details of its two techniques. Finally, we take the K-means

clustering algorithm [14] as the subject and explain how to

apply SynEva to it.

A. Overview
We give our SynEva overview in Fig. 1. It consists of three

phases: (1) preparing, (2) synthesizing, and (3) measuring.

Phase (1) makes preparations by extracting knowledge from

training scenarios via the given ML program, and wrapping

the extracted knowledge for future use via an executable

driver (together known as the knowledge program). Then phase

(2) constructs a mirror program by program synthesis from

the knowledge program and training scenarios, such that the

mirror program behaves as closely to the knowledge program

as possible on the training scenarios. After that, phase (3) com-

pares the behaviors of the knowledge and mirror programs on

predicting scenarios, and measures their similarity to compose

a report that evaluates how the extracted knowledge suits the

given predicting scenarios.
The whole process of the SynEva approach is automated.

This facilitates its application. Among the three phases, prepar-

ing is essentially the traditional training. Therefore, we elab-

orate on synthesizing and measuring in the following.

Input layer

Output layer

Knowledge layers

Fig. 2. Knowledge structure.

B. Program Synthesis

SynEva uses program synthesis to construct a mirror pro-

gram that behaves as closely to the existing knowledge pro-

gram as possible. We first explain more about the knowledge

program. Its contained knowledge is extracted from trained

scenarios, and is in the form of various trained models (e.g.,

trees, networks, and other graphs), depending on which ML

algorithm the training has used. We show the general structure

of such knowledge in Fig. 2.

Conceptually, the knowledge structure consists of three

kinds of layers, input layer, knowledge layer, and output layer.

The input layer accepts a given instance’s feature values for

prediction. The output layer reports the prediction about which

category (i.e., a label) this instance should belong to. Multiple

knowledge layers may exist, which store key information for

making (intermediate and final) predictions. On a knowledge

layer, each node can have its own prediction logic (e.g., a

condition in a decision tree (DT) [20], or a perception function

in a deep neuron network (DNN) [21]).

Based on this knowledge structure, to construct a mirror pro-

gram that behaves as closely to a given knowledge program,
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Fig. 3. A node’s structure.

one needs to consider the logics of both its whole structure

and individual nodes. In the following, we start with some

necessary concepts.

Variable. For each node in the knowledge structure, it has

own inputs (from its input edges). We consider these inputs

as values of the variables associated with a node, e.g., three

variables for the a node in Fig. 3.

Step. We define a step as the basic granularity during the

prediction. For a given instance, predicting its label can take

multiple steps, starting with Step0 and ending with StepF .

Step0 denotes the step that the input layer accepts feature

values from the given instance, i.e., initializing values for

variables of nodes on the input layer. StepF denotes the step

that values of variables have been propagated to those on the

output layer. Each intermediate step denotes a point in the

propagation flow along the knowledge structure. Suppose that

for the example in Fig. 3, Stepx denotes that the propagation

has reached the a node. Then the effect of the next step

Stepx+1 would depend on node a’s logic, with node b, c, or

both of them propagated with a value along a’s output edges

associated with variables v4 and v5 (represented as a → b and

a → c).

Sequence of steps. Which nodes/edges are involved in a

propagation step can differ in different knowledge structures,

e.g., by checking whether a node’s condition is satisfied in a

DT, or whether a node’s perception function is activated in a

DNN. We represent the whole prediction for a given instance

by a sequence of steps, <Step0, Step1, . . . , StepF>, with

each step involves a single node/edge or multiple nodes/edges.

With these concepts, we now explain how to construct the

mirror program for a given knowledge program. We make the

mirror program to have the same structure as the knowledge

program, with each step as close to each other in the predic-

tions for training scenarios as possible. To do so, we in the

mirror program: (1) simulate all involved structures during the

propagation in order to predict for training scenarios, and (2)

synthesize each simulated node’s logic to be as close to its

corresponding one in the knowledge program as possible. We

explain them in turn.

(1) Simulating structures. We consider all nodes/edges

involved in the predictions for training scenarios, and simulate

them in the mirror program. This part is straightforward by

node/edge mappings.

(2) Mirroring logics. This part is critical in SynEva, which

uses program synthesis to construct the logics for all nodes

in the mirror program. We require that for any node in the

existing knowledge structure, given the same inputs associated

to it (e.g., values of three variables for the a node in Fig. 3.)

encountered in the predictions for training scenarios by the

knowledge program, the mirroring program should make its

corresponding simulated node to generate the same outputs

(e.g., activating the same follow-up nodes/edges like the edge

a → c), thus taking the same steps.

We use Supported Vector Machine (SVM) [22] as the logic

learner for the mirror program due to the efficiency concern.

Note that SynEva can also choose other efficient learners here.

Then for each node in the mirror program, its logic is learned

from all propagation history of its corresponding node in the

knowledge program on the training scenarios. To make the

learning simple, we adopt multi-label SVM [23], i.e., learning

whether to activate one or more follow-up nodes/edges. For

the example in Fig. 3, SynEva learns to choose one of four

possibilities, i.e., activating edge a → b, edge a → c, both

edges, or none of them, for the a node. Besides, to make our

logic learner more flexible, SynEva also allows considering

input variables of nodes involved in earlier steps. That is,

when learning the logic for a node involved in Stepx, one

can include in the learning the values of input variables for

nodes involved in Stepx−1, . . . , Stepx−k, with a depth of k.

Then for each node in the mirror program, SynEva synthe-

sizes its logic by training its SVM-based logic learner using

values of input variables from corresponding nodes in the

knowledge program involved in its current and earlier k steps.

This covers all instances in the training scenarios, so that the

mirror program can behave as close to the knowledge program

as possible for each simulated node. In particular, these trained

logic learners in the mirror program simulate the knowledge

program’s behavior in choosing the same propagations (i.e.,

activating nodes/edges) when given the same inputs.

With the logic learners trained for the mirror program,

SynEva has one remaining issue: how to obtain proper values

for variables when the variables’ associated edges are acti-

vated. Some ML algorithms, e.g., DT, only choose activated

edges to execute. In this case, there is no need to obtain

additional variable values for activated edges. However, other

ML algorithms, e.g., DNN, need additional variable values

propagated along activated edges. In this case, SynEva needs

to obtain proper values for these variables associated with

activated edges. To do so, SynEva copies original value-

calculation functions (e.g., perception function in a DNN) in

each node in the knowledge program to its corresponding

node in the mirror program. As such, when a specific edge

is activated for a given instance, SynEva can invoke its

corresponding copied function to obtain its proper value.

Note that SynEva can explicitly learn a corresponding node

logic for each node in the existing knowledge structure, and

through simulating the whole structure by node/edge mapping,

it can synthesize a mirror program sharing the same knowledge

structure, and each simulated node maintains a similar prop-

agation logic correspondingly. With this synthesized mirror

program, it can predict instances for new scenarios. In the

following, we explain the use of the mirror program to help

decide how the knowledge program suits new scenarios.
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C. Similarity Measurement
The key insight behind SynEva is that: (1) if the knowledge

extracted from training scenarios suits given new scenarios,

then both the knowledge and mirror programs should behave

similarly satisfactory for the new scenarios, since the training

and new scenarios should belong to the same type; (2) on the

other hand, if the extracted knowledge does not suit given new

scenarios, then the knowledge and mirror programs should

behave differently for the new scenarios, since they agree

only on training scenarios, not guaranteeing any performance

for other scenarios, and thus the likelihood that they behave

similarly satisfactory/unsatisfactory is low. Therefore, one can

quantify the extent of how the existing knowledge suits new

scenarios by measuring the behavioral similarity between the

knowledge and mirror programs.
Consider new scenarios that contain multiple instances for

prediction. With the given knowledge program and mirror

program, each instance can be predicted for its label indi-

vidually by them. For each prediction, it comes along with

two sequences of steps, SK and SM , from their propagations

during the prediction by the two programs, respectively.
In order to measure the similarity between two sequences,

SK and SM , SynEva considers both similarities of their

contained edges and edge orders.
(1) Similarity of contained edges. For SK and SM , SynEva

derives two sets of contained edges associated with them,

respectively, i.e., EdgeSetK , EdgeSetM . SynEva calculates

the Degree of Similarity (DoS) value for the two sets of edges.

Specifically, SynEva uses the Jaccard similarity index [24] for

the calculation. Formally,

DoS(EdgeSetK , EdgeSetM ) = |EdgeSetK∩EdgeSetM |
|EdgeSetK∪EdgeSetM | .

This calculation measures how much percentage of all

contained edges are overlapping between two sequences, SK

and SM .
(2) Similarity of edge orders. For SK and SM , SynEva

also derives two sets of forwarding edge pairs associated

with them, respectively, i.e., PairSetK , PairSetM . Each

forwarding edge pair takes one edge from a step in the given

sequence and connects it to another edge in this step’s next

step. Here, we omit the initial step Step0 and final step StepF ,

since they are always the same for SK and SM . For example,

consider a sequence, <Step0, Step1, Step2, StepF>, where

Step1 involves edge1 and edge2, and Step2 involves edge3
and edge4. Then, the set of all forwarding edge pairs would

be: {<edge1, edge3>, <edge1, edge4>, <edge2, edge3>,

<edge2, edge4>}. Similarly, SynEva calculates the Degree

of Similarity (DoS) value for the two sets of forwarding edge

pairs. Formally,

DoS(PairSetK , PairSetM ) = |PairSetK∩PairSetM |
|PairSetK∪PairSetM | .

To make it simple, we only consider the two similarity mea-

surements equally important in this preliminary work, although

it can be subject to change to cater for special considerations.

Potential impacts of different weights on the similarity mea-

surement might also deserve further study, and we leave it to

our future work. For now, combining the two measurements

together (with the same similarity weights), SynEva calculates

the behavioral similarity between the knowledge and mirror

programs for one particular instance (incurring two sequences

SK and SM ) from new scenarios as follows:

DoS(SK , SM ) = 0.5×DoS(EdgeSetK , EdgeSetM ) +
0.5×DoS(PairSetK , PairSetM ).

The above formula calculates the degree of similarity be-

tween a pair of sequence of steps for a given instance. Sup-

pose that the given new scenarios contain multiple predicting

instances S : {I1, I2, ..., In}. Let DoS(SK(Ii)/SM (Ii)) be the

calculated degree of similarity for instance Ii. Then SynEva

decides how the knowledge extracted from training scenarios

suits new scenarios by a metric of the average degree of

similarity for all these instances. Formally,

Similarity(S) =
∑

Ii∈S DoS(SK(Ii),SM (Ii))

|S| .

The value of the similarity metric falls in the range of [0, 1].

According to our earlier analyzed insights, when the similarity

has a higher value, it indicates that the existing knowledge

suits new scenarios well (i.e., would obtain a similarly satis-

factory accuracy as for training scenarios). Otherwise, when

the similarity has a lower value, it indicates that the knowledge

does not suit the new scenarios well (i.e., would obtain a

different, probably lower, accuracy as compared to the training

scenarios).

D. Applying SynEva to K-means Clustering

SynEva is a general approach for evaluating ML programs

(supervised, classification-based). In this paper, we take the

K-means clustering algorithm as the subject to explain how

to apply SynEva to it. We are also working on SynEvas

application to other ML programs but consider them as our

future work. In the following, we explain how to use K-means

clustering for ML, how to define its knowledge structure for

program synthesis, and how to collect sequences of steps for

similarity measurement.

First, the K-means algorithm is originally for clustering,

but can also be used for ML by deriving a trained model

from training scenarios and later using the model to predict

labels in new scenarios. To do so, one needs to store some

key information, such as the number of clusters classified for

instances from training scenarios and the clustered instances

for each cluster. Besides, each cluster is assigned with a

label in a greedy way according to label information in the

training scenarios. Later, one can use the stored information to

predict labels for instances from new scenarios. For example,

when classifying a given instance, one can calculate the sum

of squared errors as in K-means if classifying this instance

into a cluster. After comparing all sums, the instance will be

classified into the cluster that corresponds to the minimal sum.

This decides its predicted label, which is associated with this

cluster. After examining all instances from the new scenarios,

the prediction accuracy can also be calculated if their actual

labels (i.e., the oracle) are available.
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Second, in defining the knowledge structure for program

synthesis, SynEva can be used in an easier way for the K-

means clustering algorithm. The reason is that the knowledge

structure in Fig. 2 essentially simulates a traditional program’s

control flow graph, and the preceding logic of using K-means

clustering for ML is already a program. Therefore, instead

of constructing another knowledge structure for K-means

clustering, we directly let SynEva synthesize a program to

simulate this K-means clustering program’s behavior. The only

thing worth mentioning is that all branch points in the program

are considered as nodes in the original knowledge structure.

Besides, in program synthesis, a depth value for k needs

setting. A larger value implies that more nodes participate into

the learning, and thus a higher accuracy is expected but with a

correspondingly higher cost. We set the k value according to

existing work on simulating model behavior by LSTM [12],

which suggests k = 2.

Third, measuring the degree of similarity between the

knowledge and mirror programs concerns collecting sequences

of steps in making predications for given instances. With the

preceding program structure as the knowledge structure, a

sequence of steps corresponds to an execution trace (concern-

ing branch points only), and each step corresponds to one

propagation edge only. This is simple and can be realized

easily in SynEva’s application.

IV. EVALUATION

In this section, we experimentally evaluate our SynEva

approach on its effectiveness in evaluating how the existing

knowledge extracted from training scenarios suits new scenar-

ios, as well as studying its internal characteristics, e.g., use

of SVM logic learners, impact of the number of evaluated

instances from new scenarios, and overhead in program syn-

thesis and similarity measurement. We implemented SynEva

as a prototype tool in Java 8, and aim to study based on the

implementation the following four research questions:

• RQ1. How effective is SynEva in evaluating how existing
knowledge from training scenarios suits new scenarios
by similarity measurement for knowledge and mirror
programs?

• RQ2. How does SynEva (simulating every detail of a
knowledge structure by multiple SVM-based logic learn-
ers) compare to its simple version (simulating the whole
logic by a single SVM learner)?

• RQ3. What is the impact of the number of evaluated
instances from new scenarios on SynEva’s effectiveness?

• RQ4. What is SynEva’s overhead in program synthesis
and similarity measurement?

A. Experimental Subjects

ML programs. As mentioned earlier, we applied SynEva

to the K-means clustering algorithm [14]. Its corresponding

program contains 320 LOC and four classes. The effectiveness

of K-means clustering depends on its parameter settings, and

we deploy it with five different settings, which either concern

TABLE I
DESCRIPTION OF THE FOUR REAL-WORLD DATA SETS

Data set # total
instances

# cate-
gories

# training
instances

# predicting
instances

IRIS Flower 150 3 100 50
Balance Scale

Weight & Distance
625 3 425 200

DSRC Vehicle
Communications

1,000 2 900 100

IRIS Waveform 5,000 3 4,000 1,000

different distance measuring methods or termination condi-

tions. As such, they form five program variants, represented

as K1, K2, . . ., and K5, respectively, and cal lead to different

levels of effectiveness in ML, as we show later.

Data sets. We selected four real-world data sets for testing

the five ML program variants: (1) IRIS Flower Data [26]

provided by Incorporated Research Institutions for Seismology

(IRIS), which includes 150 data instances of three different

categories (labels), (2) Balance Scale Weight & Distance

Database [27] provided by the University of California, Irvine

(UCI), which includes 625 data instances of three different

categories, (3) DSRC Vehicle Communications Data [28]

provided by UCI, which includes 1,000 data instances of two

categories, and (4) IRIS Waveform Data [29] also provided by

IRIS, which includes 5,000 data instances of three different

categories. We denote the four data sets as S1, S2, . . ., and

S4, respectively. For each data set, we randomly separated

it into a training subset (as SynEva’s training scenarios) and

a predicting subset (as SynEva’s new/predicting scenarios).

The former is relatively larger and the latter is smaller. Their

relative size ratio follows ML conventions. We give the data

set details in Table I.

Configurations. Combining the five ML program variants

(K1, K2, . . ., and K5) and four real-world data sets (S1,

S2, . . ., and S4), we obtain 20 different configurations (5

× 4). SynEva was deployed with these 20 configurations for

evaluation and comparison. Note that SynEva aims to evaluate

how the knowledge extracted from training scenarios suits

new scenarios (predicting scenarios). Under our experimental

settings, according to how SynEva is applied to K-means

clustering, an extracted knowledge is decided by both the given

ML program and given training scenarios. As such, the extent

that the extracted knowledge suits given predicting scenarios

can vary under different configurations. This makes the 20

configurations and their associated predicting scenarios qualify

for our SynEva’s evaluation, since they have different suiting

extents.

Oracle. Since predicting scenarios contain label information

already, one can calculate an ML program’s accuracy for

given predicting scenarios accordingly, as for training scenar-

ios. Then, by comparing the accuracy difference for an ML

program between a pair of training scenarios and predicting

scenarios, one can actually tell how the knowledge extracted

from the training scenarios suits the predicting scenarios. This

serves as the oracle for evaluating our SynEva’s effectiveness
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TABLE II
CORRELATION BETWEEN ACCURACY DIFFERENCES AND SYNEVA’S REPORTED SIMILARITY METRICS

Data set ML program
variant

Training
accuracy

Predicting
accuracy

Accuracy
difference

SynEva’s reported
similarity metric

K1 75.37% 72.50% 2.87% 87.08%
K2 72.50% 67.50% 5.00% 83.91%

S1 K3 82.50% 81.05% 1.45% 91.05%
K4 87.50% 82.50% 5.00% 86.69%
K5 90.00% 87.25% 2.75% 92.13%
K1 67.14% 60.26% 6.88% 90.81%
K2 66.63% 60.00% 6.63% 79.18%+

S2 K3 64.71% 55.42% 9.29%* 67.23%+

K4 60.26% 56.27% 3.99% 82.22%
K5 46.68% 42.16% 4.52% 85.54%
K1 73.60% 70.24% 3.36% 85.30%
K2 86.55% 83.85% 2.70% 87.80%

S3 K3 70.26% 63.27% 6.99%* 78.05%+

K4 77.24% 64.85% 12.39%* 69.64%+

K5 74.32% 70.64% 3.68% 88.45%

K1 84.23% 77.04% 7.19%* 79.85%
K2 83.50% 79.01% 4.49% 84.83%

S4 K3 88.00% 79.01% 8.99%* 78.25%+

K4 84.01% 69.08% 14.93%* 73.80%+

K5 87.40% 80.83% 6.57% 85.81%
* Top 30% unsuitable cases ranked according to the accuracy difference
+ Top 30% unsuitable cases ranked according to SynEva’s reported similarity metric

in experiments. That is, we will see whether SynEva can

accurately evaluate such differences by its reported similarity

metric values. Note that we assume the availability of the

predicting accuracy data only for experimental purposes, and

using SynEva in practice does not require it.

B. Experimental Setup and Design

To answer the four research questions, we evaluate SynEva

under the aforementioned 20 different configurations.

To answer RQ1, for each configuration, we compare the

oracle (i.e., actual accuracy differences for an ML program

between a pair of training scenarios and predicting scenarios)

to SynEva’s reported similarity metric values. We consider that

a larger accuracy difference implies a lower suiting extent,

and vice versa. SynEva should be able to disclose such a rela-

tionship. Therefore, we study the correlation between reported

accuracy differences (by the oracle) and reported similarity

metric values (by SynEva). If a strong correlation can be

found. SynEva would be validated to be effective in evaluating

how the knowledge extracted from training scenarios suits new

scenarios.

To answer RQ2, we actually want to compare SynEva to

existing work. However, we are not aware of any existing

work that can evaluate how the knowledge extracted from

training scenarios suits new scenarios without relying on any

oracle, comparable implementation, or manual effort. As such,

we compare SynEva to its simple version that also represents

an intuitive idea of using ML to capture the behavioral logic

of a program in a black box way. SynEva simulates every

detail of a knowledge structure by multiple SVM-based logic

learner. For comparison, we implemented its simple version

by simulating the whole knowledge structure by a single SVM

learner, which is named SvmEva. Other parts are the same for

SynEva and SvmEva. By comparing their effectiveness under

the 20 configurations, we plan to validate the necessity of

SynEva’s program synthesis on both the knowledge structure

and its every logic detail.

To answer RQ3, we reduce the number of evaluated in-

stances from predicting scenarios with a pace of 25%, (i.e.,

100%, 75%, 50%, and 25%), to study its impact on SynEva’s

effectiveness in evaluating how the knowledge extracted from

training scenarios suits new scenarios. We conjecture that

less evaluated predicting instances could possibly lead to

more unstable similarity metric values. Therefore, this should

negatively affect the studied correlation, which directly relates

to SynEva’s effectiveness. We plan to validate this in experi-

ments.

To answer RQ4, we measure SynEva’s time costs in syn-

thesizing the mirror programs and making similarity measure-

ments. The costs should be acceptable.

All experiments were conducted on a commodity PC with

an Intel(R) Core(TM) i7 CPU @4.2GHz and 32GB RAM.

C. Experimental Results and Analyses

In the following, we answer the preceding four research

questions in turn.

RQ1. We conducted experiments with the aforementioned

20 configurations and collected SynEva’s reported similarity

metric values. All data are listed in Table II, aligned with

these configurations’ corresponding training accuracy, predict-

ing accuracy, and accuracy difference data. We can roughly

observe that when SynEva reports a high similarity metric

value, say 91.05%, its corresponding difference is low, say

1.45% (suiting). On the other hand, when SynEva reports a

low similarity metric value, say 69.64%, its corresponding

accuracy difference is high, say 12.39% (unsuiting). To reach
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(d) On data set S4

Fig. 4. Comparison of SynEva’s program synthesis techniques (whole structure + logic detail vs. whole logic)

a deeper understanding of such a relationship, we calculate the

correlation between the two series of data (accuracy difference

vs. similarity metric), and obtain a result of −0.81, which

discloses a strong negative correlation. This result suggest that

SynEva can effectively evaluate how the knowledge extracted

from training scenarios suits new scenarios by its similarity

measurement for knowledge and mirror programs.

Besides, we also observe that SynEva is good at identifying

extremely unsuiting scenarios. For example, when considering

the top 30% unsuiting cases ranked according to the accuracy

difference (i.e., top large accuracy differences from the oracle),

they concern six configurations, namely, S2-K3, S3-K3, S3-

K4, S4-K1, S4-K3, and S4-K4. Among them, five out of

six have been reported by SynEva as the top 30% unsuiting

cases ranked according to the similarity metric (i.e., top small

similarity metric values). The only missing one, S4-K1, is

ranked #5 by the oracle and #7 by SynEva. Their ranks are

actually very close to each other.

Therefore, we answer RQ1 as follows:

SynEva can effectively evaluate how an ML pro-
gram’s knowledge extracted from training scenarios
suits new scenarios, especially for extremely unsuiting
cases. Besides, its evaluation has a strong negative
correlation (−0.81) with the oracle.

RQ2. We then study how SynEva (simulating every detail of

a knowledge structure by multiple SVM-based logic learners)

compares to its simple version SvmEva (simulating the whole

logic by a single SVM learner). Fig. 4 compares such two

settings on the five program variants and four data sets (a–d).

A rough observation may suggest that SynEva and SvmEva

can still report close similarity metric values on some points

(e.g., K2 for S1 and K4 for S2). However, an objective

comparison should take into account all these performance

data (covering all 20 configurations). Therefore, we also show

their corresponding accuracy differences from the oracle in

Fig. 4, and compare the correlations between SynEva/SvmEva

data and the oracle data for each data set. Then for data set

S1, the correlation for SynEva is −0.63, while for SvmEva, it

is only −0.31 (50.8% less by absolute value). For S2, the

correlation is −0.80 and −0.70 (12.5% less), respectively.

For S3 and S4, the correlation is −0.91 vs. −0.74 (18.7%

less) and −0.98 vs. −0.82 (16.2% less). If combining all data

sets together (i.e., all 20 configurations), the correlation is

−0.81 vs. −0.62 (23.5% less). We observe that no matter

considering each data set or all data sets together, SynEva

always outperforms SvmEva in the correlation. This result

validates the necessity of SynEva’s program synthesis on both

the knowledge structure and its every logic detail.

Therefore, we answer RQ2 as follows:
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Fig. 5. Impact of the number of evaluated instances on SynEva’s effectiveness

SynEva synthesizes a mirror program by considering
both the knowledge structure and its every logic
detail. This design directly contributes to its effec-
tiveness. SynEva can thus produce a much stronger
correlation, as compared to the simple design of
simulating the whole logic by a single SVM learner.

RQ3. We next study the impact of the number of evaluated

instances from predicting scenarios on SynEva’s effectiveness.

So we controlled the number from 100% (i.e., all predicting

instances) down to 25% with a pace of 25%, and study its

impact on the correlation between the oracle and SynEva’s

TABLE III
OVERHEAD IN PROGRAM SYNTHESIS

Data set Time cost (s) # Training
instances

Time cost per
instance (ms)

S1 0.32 100 3.20
S2 0.71 425 1.67
S3 3.26 900 3.62
S4 4.82 4,000 1.20

Total 9.11 5,425 1.68

TABLE IV
OVERHEAD IN SIMILARITY MEASUREMENT

Data set Time cost
(ms)

# Predicting
instances

Time cost per
instance (ms)

S1 17.53 50 0.35
S2 179.64 200 0.90
S3 74.44 100 0.74
S4 283.40 1,000 0.28

Total 555.01 1,350 0.41

evaluation results. Fig. 5 shows how the correlation changes

with the decreasing of the number of evaluated instances on

the four data sets (a–d).

We observe that in all but one cases, the absolute value

of the correlation dramatically decreases, becoming closer to

zero. This suggests that the correlation becomes weaker with

the decreasing of the number of evaluated instances, clearly

negatively affecting SynEva’s effectiveness. When averaging

all data sets, their average correlation is −0.83 if one uses

100% instances, but it drops (by absolute value) to −0.54

when using half instances (50%). For the only exceptional

case (from S2-50% to S2-25%), the negative correlation of

−0.18 unexpectedly becomes a positive correlation of 0.64.

This directly denies SynEva’s original purpose (i.e., potentially

considering suiting/unsuiting scenarios as unsuiting/suiting

ones). This suggests that in such an extremely case, SynEva’s

reported evaluation might no longer be trustworthy. Therefore,

SynEva’s effectiveness would rely on the number of evaluated

instances from predicting scenarios. The more, the better. In

practice, we consider that the ratio between the number of

evaluated predicting instances and that of training instances

can be a good indicator. Since our experiments have used

a range of such ratios (11.1–50%) for RQ1 and they all

correspond to satisfactory results, we suggest that a threshold

of 20% can be a good choice. Nevertheless, the threshold

should relate to specific ML programs and associated testing

scenarios. This issue deserves future work and is not in the

scope of this work.

Therefore, we answer RQ3 as follows:

The number of evaluated instances from predicting
scenarios has an impact on SynEva’s effectiveness.
With the decreasing of this number, SynEva’s reported
evaluation results would become less trustworthy.

RQ4. Finally, we measure SynEva’s overhead in terms of

time costs on its program synthesis and similarity measure-

ment. Table III and Table IV list these time cost data.
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We observe that SynEva spent 0.32–4.82 seconds (average:

2.28 s) to synthesize mirror programs and 17.5–283.4 mil-

liseconds (average: 138.75 ms) to measure similarity metric

values. We note that the time costs depend on the number of

training/predicting instances. So we also calculate the average

time costs per instance. Then the costs are 1.68 ms and

0.41 ms, respectively. We observe that no matter one considers

all instances or one instance, the time costs are both small. In

practice, one may apply SynEva to a data set with 10,000

training instances and 2,000 predicting instances (as a typical

ML application), the total time cost would be: 16.8 s + 0.82

s = 17.62 s, which is clearly acceptable.
Therefore, we answer RQ4 as follows:

SynEva’s overhead is small. Its time cost goes for
program synthesis and similarity measurement. In our
experiments, the former takes 0.32–4.82 seconds and
the latter takes 17.5–283.4 milliseconds only.

D. Discussions and Threat Analyses
There are some issues that deserve further discussions

regarding SynEva’s usage and its experimental validity.
First, we applied SynEva to K-means clustering and eval-

uated its effectiveness. As mentioned, K-means is originally

for clustering, and does not strictly follow a traditional ML

process (supervised, classification-based), i.e., first training a

model and then using the model for prediction. As the first

subject in our work, we carefully considered the application

of K-means clustering for the ML purpose and explained it

in Section III.D. This makes K-means clustering work as

ML, and thus automatically suitable for our SynEva approach.

Note that SynEva does not use any special feature of K-

means clustering, and thus applicable to other ML programs

as long as they have a training and prediction interface. We

are working along this line to test SynEva on more other ML

programs.
Second, when evaluating SynEva’s effectiveness on new

scenarios, it would be better if one uses already tagged sce-

narios that clearly state whether they match original training

scenarios from which the knowledge is extracted. Due to the

lack of such resources, we make both training instances and

predicting instances from the same sources (i.e., the four data

sets). Nevertheless, this does not mean that thus constructed

predicting scenarios must match training scenarios, as we

have explained in Section IV.A. In fact, constructed predicting

scenarios have clearly varying suiting extents, as compared to

their corresponding training scenarios. The oracle shows that

the accuracy difference between a pair of training scenarios

and predicting scenarios varies from 1.45% to 14.93% (in

Table II), which specifies a significant range. Note that SynEva

is unaware of such accuracy differences, but still able to

evaluate how the knowledge extracted from training scenarios

suits predicting scenarios, with a strong correlation with the

oracle. This validates its effectiveness.
Third, we earlier implied that when an ML program obtains

a satisfactory model from training scenarios, then one would

be interested in whether the trained model suits new scenarios

(i.e., our target problem). In our experiment, the column

“Training accuracy” in Table II suggests the performance

of the trained model on the training scenarios from which

the model is trained. We observe that the performance is

quantified by an accuracy value range from 46.68% to 90.00%,

seemingly unable to fall into “satisfactory”. Nevertheless, we

should say that the decision on whether an accuracy value

is “satisfactory” is application-specific and ML technique-

specific. In experiments, we do not make any assumption that

a “satisfactory” accuracy value must be over 80% or even

95%. Instead, we tested SynEva with such a large range of

accuracy values, and it still produced good results. In fact,

SynEva itself does not have such a requirement. This helps

widen its applicability.

V. RELATED WORK

In this section, we discuss the related work in recent

years on three aspects: testing ML programs, testing programs
without oracle, and automatic program synthesis.

Testing ML programs. The traditional practices for test-

ing ML programs primarily involves accuracy measurement

on randomly sampled test inputs from manually labeled

datasets [30]. For example, Google [31] used both in-field

testing driving and unguided simulations to test its Waymo

self-driving cars. Different from such black-box testing ap-

proaches, some researchers use an ML program’s internal

knowledge (i.e., its trained model) to reveal the program’s

abnormal behaviors. Goodfellow et al. [32] introduced an

approach to finding an ML model’s adversarial examples

based on the model’s linear behaviors in high-dimensional

spaces. Nguyen et al. [33] showed how to produce images

totally unrecognizable to human eyes that well-trained ML

programs believe with certainty are different objects. Pei et

al. [6] proposed a white-box framework to generate corner

cases that can result in an ML program’s erroneous behaviors

via differential testing. Tian et al. [7] presented a systematical

tool to automatically detect erroneous behaviors of DNN-

driving vehicles based on transformation-specific metamorphic

relations. Different from these testing techniques, our SynEva

does not aims to reveal possible abnormal behaviors of ML

programs, but tries to provide a quantitative evaluation of how

an ML program’s trained model from training scenarios suits

new scenarios. Besides, SynEva does not require any oracle,

comparable implementation, or manual effort for inspection.

Testing programs without oracles. The oracle problem

closely relates to the effectiveness of software testing tech-

niques. A conventional approach to testing a program with-

out its oracle is to use invariants that encode a program’s

behavior in passing executions as an oracle-alike artifact

for testing. As a representative approach for automated in-

variant generation, Daikon [34] inferred preconditions and

postconditions for methods ever executed in a program, by

collecting program execution information and then using its

built-in templates to synthesize invariants from such collected

information. DySy [35] followed a similar way and used

branch conditions to infer invariants. Eclat [36] took automated
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invariant generation one step further, by learning a model from

assumed executions and identifying inputs that differ from the

learned model. For testing purpose, some techniques, such

as Randoop [37] and Evosuite [38], can generate test cases

that include assertions encoding their observed behaviors from

program executions. The synthesized mirror program in our

SynEva approach from given knowledge can be regarded as

a special type of invariants that encode the concerned ML

program’s behaviors on training scenarios. However, instead

of using the mirror program alone as an assertion or invariant-

alike artifact, SynEva compares the program’s behavior with

the corresponding knowledge program’s behavior on predict-

ing scenarios, and evaluates it with a quantified similarity

measurement, which suggests how the knowledge program

suits new scenarios.

Differential testing is another representative approach to

testing programs without oracles. It typically relies on several

already implemented programs with the same specification as

cross-reference oracles. Chen et al. [9] combined differen-

tial testing with mutation testing to focus testing efforts on

representative classfiles of JVMs. Yang et al. [10] provided

a tool, CSmith, to automatically generate C programs that

cover a large subset of C features, and used such generated

programs’ executions on different open-source C compilers

to reveal potential compiler bugs. Jung et al. [39] developed

a differential testing technique, in which perturbations in a

mobile app’s inputs are mapped to perturbations in the app’s

outputs to discover likely private information leaks. Petsios

et al. [11] introduced a notion of δ-diversity to summarizes

the observed asymmetries between the behaviors of multi-

version programs, similar to differential testing, and provided a

domain-independent input generation mechanism based on δ-

diversity. Similar to existing differential testing techniques, our

SynEva approach also uses a cross-reference oracle for eval-

uating an ML program’s performance. Nevertheless, SynEva

does not assume the availability of such an oracle. Instead, it

constructs it from the existing knowledge automatically.

Automatic program synthesis. Automatic program synthe-

sis is considered to be one of the most central problems in the

theory of programming [40], and attracts many research efforts

in the communities of software engineering and programming

languages. Manna et al. [42] proposed deductive synthesis,

whose basic idea is that a program can be extracted from a

constructive proof of the satisfiability of a given specification.

Solar-Lezama [25] used a partial program to express the high-

level structure of the target program to be synthesized, and

proposed an SAT-based inductive approach to synthesizing

the program’s implementation from a small number of test

cases. Wu et al. [41] emphasized on entity transformation

tasks and proposed ENTER to automatically synthesize such

entity transformations into a program from examples based

on a domain-agnostic language. There are various of off-

the-shelf systems that support automatic program synthesis,

including NuPRL [43] and KIDS [44]. These systems allow a

programmer to provide the insight about the implementation

at a high level, in the form of axioms and theorems about the

problem domain, and then use them to automatically derive

a correct implementation from the high-level specification.

Different from these pieces of existing work, our SynEva

approach synthesizes a mirror program using the given ML

program’s execution traces (or its propagation steps in the

corresponding knowledge structure), instead of using the pro-

gram’s specification directly, which is typically difficult to

obtain.

The artificial intelligence community also makes efforts

on automatic program synthesis in recent years. Graves et

al. [45] developed a neural Turing machine, which can learn

and execute simple program functionalities, such as repeating,

copying, sorting and so on. Vinyals et al. [46] presented

Pointer Networks that generalize the notion of encoder atten-

tion in order to provide a decoder for a variable-sized output

space depending on the input sequence’s length. Joulin et

al. [47] augmented a recurrent network with a pushdown stack,

allowing for generalization to longer input sequences than

one during training for several algorithmic patterns. Redd et

al. [12] proposed a neural programmer-interpreter, a recurrent

and compositional neural network that learns to represent

and execute programs. Our SynEva approach also synthesizes

programs, inspired by these pieces of existing work. Never-

theless, SynEva moves one step further by synthesizing mirror

programs to automatically evaluate how existing knowledge

suits new scenarios.

VI. CONCLUSION

In this paper, we present a novel ML program evaluation

approach, SynEva, to automatically evaluate how a given ML

program’s knowledge extracted from training scenarios suits

its new scenarios. SynEva realizes this goal by a program

synthesis technique that systematically constructs the mirror

program that accurately captures expected behaviors of the

existing knowledge on the training scenarios, and a similar-

ity measurement technique that automatically compares how

similarly the mirror program behaves on the new scenarios

as the knowledge program. SynEva is fully automated, and

does not require any oracle, comparable implementation, or

manual effort. Besides, it produces satisfactory results by

strong correlation and little overhead as our experimental

evaluation reports.

SynEva can potentially have boarder usages. In nowadays

ML applications such as self-driving, driving logics are con-

tinuously trained and strengthened for future use. Such logics,

as trained models from earlier scenarios, are becoming kernel

program logics to self-driving. That is, they are not only

outputs of ML programs, but also part of evolving application

programs. Then the online validation on whether and how such

logics suit future scenarios is a critical task, and our SynEva

can potentially contribute to this, helping improve human life

and protecting them from dangers.1 Of course, researches and

1The latest pedestrian-hitting event occurred on March 18, 2018:
http://www.syracuse.com/us-news/index.ssf/2018/03/uber self-
driving car pedestrian video arizona.html
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practitioners have a long way to go, and we are working along

this line.
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