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a b s t r a c t 

Self-adaptive applications (“apps” for short) are useful but error-prone. This stems from developers’ in- 

adequate consideration of environmental dynamics and uncertainty. Two features of self-adaptive apps, 

infinite reaction loop and uncertain interaction , bring additional challenges to software testing and make 

existing approaches ineffective. In this article, we propose a novel approach SIT ( S ample-based I nteractive 

T esting) to testing self-adaptive apps effectively and in a light-weight way. Our key insight is that a self- 

adaptive app’s input space can be systematically split, adaptively explored, and mapped to the testing 

of the app’s different behavior. This is achieved by our approach’s two components, an interactive app 

model and a test generation technique. The former captures characteristics of interactions between an 

app and its environment, and the latter uses adaptive sampling to explore an app’s input space and test 

its behavior. We experimentally evaluated our approach with real-world self-adaptive apps. The experi- 

mental results reported that our SIT improved the bug detection by 22.4–42.2%, but with a smaller time 

cost. Besides, SIT is also scalable with our tailored optimization techniques. 

© 2016 Elsevier Inc. All rights reserved. 
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1. Introduction 

Self-adaptive applications (“apps” for short) are gaining increas-

ing attention. Their programs contain adaptation logic, which de-

cide ways of delivering services based on varying environmen-

tal conditions ( McKinley et al., 2004 ). Such apps typically run

on embedded systems or smartphone platforms, using their sen-

sors to collect environmental conditions. Different from traditional

programs, a self-adaptive app involves a closed interaction loop

that connects the app to its running environment, in which the

app senses environmental changes, makes decisions based on its

adaptation logic and performs adaptation to cope with the sensed

changes. Examples of such self-adaptive apps include robot- car

( Yang et al., 2014 ), which controls an intelligent automatic car

to explore an unknown area, phone-adaptor ( Sama et al., 2008 ) 1 ,

which adapts the working mode of a smartphone according to its

sensed changes in its user contexts, and Locale, 2 which provides
∗ Corresponding author at: Department of Computer Science and Technology, 

Nanjing University, China. 

E-mail addresses: qy.ics@smail.nju.edu.cn (Y. Qin), changxu@nju.edu.cn (C. Xu), 

yuping@nju.edu.cn (P. Yu), lj@nju.edu.cn (J. Lu). 
1 http://sccpu2.cse.ust.hk/afchecker/phoneadapter.html . 
2 http://www.twofortyfouram.com . 
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ocation-based services (e.g., reminding book-returning near library

r meeting schedules in office) automatically. 

While self-adaptive apps offer flexible functionalities, they have

o address complexities incurred by environmental dynamics and

ncertainty. Empirical evidence shows that building self-adaptive

pps is challenging and they are easily error-prone ( Kulkarni and

ripathi, 2010; Sama et al., 2010; Xu et al., 2012 ). Regarding this,

e identify two major causes: 

nfinite reaction loop 

A self-adaptive app executes in an infinite reaction loop with

ts environment ( Brun et al., 2009 ). This execution model differs

rom those of many traditional apps, which take finite values (as

nput) and return results (as output). A self-adaptive app’s reac-

ion loop incurs an infinite series of input/output pairs, and this

orms a large state space, in which the app’s behavior can hardly

e adequately tested. Besides, due to physical constraints, this se-

ies of input/output pairs has inherent correlations on their values.

or example, a specific output (say, action of moving a robot-car

orward) changes an environment’s status, which then affects the

oncerned app’s next input (say, shortening the distance between

he car and its facing obstacle). As such, testing self-adaptive apps

s non-trivial in that it has to take environment into consideration.

n this article, we use iteration to denote one pass in executing an

pp’s reaction loop (i.e., sensing-decision-adaptation). 

http://dx.doi.org/10.1016/j.jss.2016.07.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.07.002&domain=pdf
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ncertain interaction 

A self-adaptive app also interacts with its environment in an

ncertain way ( Cheng, 2009 ). This refers to both internal uncer-

ainty (difficulty of deciding the impact of adaptation on an app’s

oal realization) and external uncertainty (difficulty of deciding

he error in measuring environmental conditions) ( Esfahani et al.,

011 ). While the former concerns more on adaptation algorithms,

e in this article focus on the latter, which affects how a self-

daptive app understands its environment and takes normal or ab-

ormal behavior. 

These two causes together decide the differences between the

ugs in self-adaptive apps and those in traditional programs. While

 traditional program’s bugs depend mostly on the program it-

elf (e.g., developers’ mistakes in writing programs), a self-adaptive

pp’s bugs would rely on three factors, namely, the app (program)

tself, its running environment, and the uncertainty that affects

pp-environment interactions. First, the app may itself have imple-

entation defects in dealing with app-environment interactions.

econd, the app’s running environment follows certain physical

onstraints and this may trigger program bugs in a way indepen-

ent of the app itself. Finally, uncertainty in app-environment in-

eractions can also cause the app’s execution to deviate from its

upposed path, leading to unexpected failure. 

The uniqueness of bugs in self-adaptive app contributes to the

hallenges in effectively testing self-adaptive apps. An app can fail

fter accumulating multiple executions of its reaction loop with

ts environment. These executions are different iterations of the

ame program loop but with different input/output pairs. Testing

uch an app has to connect all these iterations, and this forms

 large space, in which failure can be easily missed. Uncertainty

urther worsens the testing practice by making the input/output

airs deviate from their ideal values. For example, a robot-car can

ave its sensed distance contain unpredicted error, and its turning-

irection action can also be imprecise due to uncontrollable rub

ith the ground. Such uncertainty can cause new problems to test-

ng self-adaptive apps. For example, if the car senses its environ-

ent once per second and it runs for only one minute, then its

pp’s execution can contain up to 2 60 possibilities, even if uncer-

ainty causes only two values to each input. Searching for a bug in

uch a large space is difficult. Thus the testing has to be extremely

fficient to be useful. 

Existing work proposed various random testing techniques to

ddress the large space problem for self-adaptive apps, e.g., by

onsidering metamorphic relations ( Tse et al., 2004 ), context-

witching points ( Wang et al., 2007 ) and adverse environmental

onditions ( Ramirez et al., 2011 ). While they improve the testing

fficiency, a systematic exploration of an app’s space is not guaran-

eed. Moreover, the uncertainty issue is also overlooked. Our later

valuation reports that random testing could miss 39.2–64.2% bugs

n self-adaptive apps. 

Some other work focuses on guided testing for systematic ex-

loration of an app’s space. Dynamic symbolic execution (DSE)

r concolic testing ( Godefroid et al., 2005; Sen et al., 2005 ) and

heir variants are typical examples. When applied for testing self-

daptive apps, these techniques are also inadequate due to their

ow-efficiency caused by constraint solving. Moreover, physical

onstraints from environment (named environmental constraints )

re usually, but such constraints are usually missing, and this

auses solving-based techniques unable to explore an app’s space

ompletely. Our later evaluation reports that DSE could miss 25–

0.5% bugs in self-adaptive apps. Besides, DSE itself is very time-

onsuming and it could explore very limited reaction interactions

iven the same time budget. 

Self-adaptive app resembles mobile app in that both of them

elate the environment. However, our work is essentially testing
elf-adaptive apps that interact with their environments, which can

ct in an uncertain way, rather than testing mobile apps with-

ut considering their environments and uncertainty explicitly (al-

hough such apps can also be our subjects in some situations as

hown in our evaluation). Testing self-adaptive apps differs from

esting mobile apps. For example, the former needs to consider

n app’s environment for a complete interaction-and-adaptation

oop and this loop can go for multiple iterations, while the lat-

er focuses mostly on an app itself. In other words, when consid-

ring sensing inputs from multiple iterations between an app and

ts environment, testing a mobile app seldom considers the inher-

nt constraints of the sequences of sensing inputs of the app. This

ight cause problems to testing self-adaptive apps that interact

ith their environments, if one uses the same testing approach.

or example, our later evaluation reports that bugs detected for

elf-adaptive apps by a mobile app testing approach ( Liang et al.,

014 ) can contain up to 78.5% false positives. 

In this article, we propose a novel approach SIT ( S ample-based

 nteractive T esting) for testing self-adaptive apps. It consists of an

nteractive app model and a test generation technique. The model

aptures the characteristics of interactions between an app and its

nvironment, and the technique uses adaptive sampling to system-

tically explore an app’s space. They together contribute to our SIT

pproach’s effectiveness. On one hand, our interactive app model

onsiders the impact of environmental constraints and uncertainty

n an app’s input/output pairs, and enables a systematic explo-

ation of its space. This exploration is guided, as compared to ran-

om testing. On the other hand, our test generation technique is

ight-weight by only sampling those inputs required by the explo-

ation. Besides, the sampling does not rely on constraint solving, as

ompared to DSE. Therefore, it is highly efficient. 

We experimentally evaluated our SIT approach with real-world

elf-adaptive apps and compared it with existing work. The experi-

ental results consistently showed our SIT’s effectiveness and effi-

iency. In particular, SIT improved the bug detection by 22.4–42.2%

ut with a smaller time cost. In summary, we make the following

ontributions in this article: 

• Proposed an interactive app model for understanding interac-

tions between an app and its running environment; 
• Proposed a test generation technique for systematically sam-

pling an app’s space in a light-weight way; 
• Conducted experiments to evaluate our approach with real-

world self-adaptive apps. 

The remainder of this article is organized as follows.

ection 2 introduces our interactive app model for understanding

ow an app interacts with its environment, and presents a moti-

ating example. Section 3 elaborates on our sampling-based test

eneration based on our interactive app model. Section 4 eval-

ates our SIT approach and compares it with existing work.

ection 5 discusses related work, and finally Section 6 concludes

his article and discusses future work. 

. Preliminaries 

In this section, we introduce our interactive app model and

resent our motivating example based on this model. 

.1. Interactive app model 

We propose an i nteractive a pp m odel (IAM) to explain how a

elf-adaptive app interacts with its environment under uncertainty.

he model concerns not only the app itself, but also its interacting

nvironment, as contrast to traditional app models, which typically

oncern apps themselves only. 
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Given a self-adaptive app, we define its IAM using a tuple ( P, E,

inter P , inter E , U, C ). We use P to represent the app, and E to rep-

resent the environment where the app executes. We assume the

availability of P ’s source code (i.e., white-box), but do not know

how E works (i.e., black-box). Still, we can observe P ’s behavior

in E (i.e., P ’s output) and P ’s obtained sensory data from E (i.e.,

P ’s input) through the testing interfaces of P and E , denoted by

inter P and inter E , respectively. Testing interfaces describe P ’s and

E ’s variables whose values can be observed and manipulated as re-

quested by a certain testing approach. We use U to represent an

uncertainty specification, which describes the uncertainty affect-

ing the interactions between P and E . Note that a complete de-

scription of uncertainty is typically infeasible, but we assume the

availability of a partial specification (e.g., knowing a specific sensor

variable’s error range, which can be obtained from hardware spec-

ification or field tests). We use C to represent P ’s and E ’s initial

configuration (i.e., default startup parameters for P and initial en-

vironmental layout for E ). In the following, we elaborate on these

elements. 

App (P) and its testing interface inter P 
Given a self-adaptive app P , we define its testing interface using

a tuple ( I P , O P , G P ): 

• I P represents the app’s input parameters. It is formed by a vec-

tor 〈 i P1 , i P2 , . . . , i Pn 〉 , and each one i Pj represents a specific sen-

sor variable, which takes sensory data as its value from envi-

ronment. 
• O P represents the app’s output parameters. It is also formed by

a vector 〈 o P1 , o P2 , . . . , o Pm 

〉 , which together explain what change

is to be made to environment. 
• G P represents a set of variables defined in P that are shared

across different iterations in P ’s execution. These variables are

considered as global variables of P . Their values specify the app’s

current state. 

Take our Robot-car app P for example. Its input parameters I P 
is a vector containing three variables: 〈 disF, disL, disR 〉 , which rep-

resent the car’s sensed distances to its front, left-hand and right-

hand obstacles, respectively. Its output parameters O P is a vector

of two variables: 〈 actionType, actionPara 〉 , which represent the type

of the action the car is to take (e.g.,“moving” or “turning”) and its

associated data (e.g., 3 cm for “moving” or +90 degrees for “turn-

ing”). The app’s global variables G P contains two variables, task and

past , which represent the car’s current task and recent input data

(containing last five inputs for decision making), respectively. 

Environment (E) and its testing interface inter E 
Our interactive app model also considers the environment E in

which a self-adaptive app P executes. Conceptually, we consider

the environment as a black-box program, which takes the app P ’s

output as its input (i.e., applying the change the output is to make)

and returns its output as P ’s input (i.e., returning sensory data to

P ). We further define E ’s testing interface inter E using a tuple ( I E ,

O E , G E ): 

• I E represents the environment’s input parameters. It is a vec-

tor 〈 i E1 , i E2 , . . . , i Em 

〉 , which corresponds to the app P ’s output

〈 o P1 , o P2 , . . . , o Pm 

〉 . 
• O E represents the environment’s output parameters. It is also a

vector 〈 o E1 , o E2 , . . . , o En 〉 , which corresponds to the app P ’s in-

put 〈 i P1 , i P2 , . . . , i Pn 〉 . 
• G E represents a set of variables that describe environment E ’s

status (e.g., environmental layout and object relationships). We

assume these variables to be observable and resettable, thus fa-
cilitating our testing of the concerned app P . S  
For our Robot-car app P , its environment E ’s input parameters

 E contains two variables: actionType and actionPara , which are ex-

ctly P ’s output parameters (i.e., type of the action the car is to

ake and its associated data). E ’s output parameters O E contains

hree variables: disF, disL and disR , which similarly correspond to

 ’s input parameters (i.e., car’s sensed distances to its front, left-

and and right-hand obstacles). G E contains variables like envCar-

oc, envCarDir, envObjPro 1 , ..., envObjPro n . They describe the car’s

urrent location, direction, and properties of obstacles (e.g., layout

nd boundaries) in the environment. 

ncertainty specification (U) 

We define the uncertainty specification U as a set of functions,

ach of which maps a given environment’s output parameter o E 
o its corresponding app’s input parameters as well as the associ-

ted error range ( i P , lower, upper ). We assume the error range to be

ontinuous within its lower and upper bounds. This simplification

reatment applies to many real-world cases. Our model includes

ncertainty since a self-adaptive app P interacts with its environ-

ent E under uncertainty in practice. If one does not consider un-

ertainty, P ’s input I P would trivially equal to environment E ’s out-

ut O E , i.e., I P = O E , on their values. In practice, I P � = O E (on values)

ue to uncertainty. Their differences are caused by unreliable envi-

onmental sensing (e.g., a sensed value deviates from its supposed

alue) or flawed physical actions (e.g., an action is taken without

xactly achieving its supposed effect) ( Ramirez et al., 2012 ). The

forementioned definition of U models such differences. 

For our Robot-car app, its uncertainty specification U is defined

s the following mappings: 

O E .d isF → (I P .d isF , −0 . 1 , 0 . 1) ; 

O E .disL → (I P .disL, −0 . 1 , 0 . 1) ; 

O E .disR → (I P .disR, −0 . 1 , 0 . 1) . 

onfiguration (C) 

We use C to represent the initial configuration for app P and

nvironment E. C contains initial values for variables in G P and G E ,

espectively. For our Robot-car app, C makes initial assignments to

pp P ’s global variables, and initializes environment E ’s layout and

roperties of its contained obstacles. 

As a whole, our interactive app model IAM = ( P, E, inter P , inter E ,

, C ) works in an iterative way, as illustrated in Fig. 1 . It starts with

pp P and environment E initialized by configuration C through

heir testing interfaces(Label 1). App P ’s input I P comes from en-

ironment E ’s output O E . Then P executes based on I P , updates its

 P , and returns output O P by its testing interface inter P (Label 2). E

akes O P as its input I E , “executes” by applying I E ’s effect to update

ts G E , and returns output O E by its testing interface inter E (Label

). This forms an iterative reaction loop. Since uncertainty specifi-

ation U affects the interactions between inter P and inter E , we con-

eptually represent this affection by I P = U(O E ) , making I P and O E 

o longer simply identical (Label 4). 

Our SIT approach assumes that the app under test should have

ource code (some existing work also has this assumption, e.g.,

redericks et al., 2013; Sama et al., 2008 ), but this assumption does

ot also go for the environment under test (i.e., the environment

an simply be a black box). Besides, the source code of a self-

daptive app can be used to explain how a failure is triggered for

his app, when it runs under a specific environment according to

IT’s generated execution traces, as we explain later. 

We also have two assumptions for the used environment in our

IT approach. First, we assume that the environment should be ob-

ervable. This implies that one can monitor the values of its pa-

ameters for understanding its status during an app’s execution.

ome existing work ( Ramirez et al., 2011; Fredericks et al., 2013 )
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Fig. 1. IAM’s iterative reaction loop. 
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n testing self-adaptive apps has similar assumptions. Besides, this

ssumption may also be supported by existing work ( Perera et al.,

014; Lee et al., 2012 ). With this support, one is able to evaluate

 E and I P , as required in our SIT approach. Second, we optionally

ssume that the environment can also be manipulated, i.e., the val-

es of its parameters can be set or reset. This facilitates executing

ur SIT approach. If it is not supported, our approach still works

ut has reduced efficiency as the app under test needs to restart

rom the beginning each time. 

Then the elements in an IAM model can be prepared as follows:

1) app P is directly available from the user, who plans to test P ;

2) environent E is also available from the user, which could be an

nvironment simulator, emulator or a real one (e.g., we used third-

arty simulators or emulators for experimental subjects in our

ater evalutation); (3) testing interface inter P is realized by instru-

enting app P (concerned input and output parameters should be

dentified manually in advance), and testing interface inter E should

e already ready if E is a simulator or emulator, or needs manual

mplementation if E is a real environment (the implementation is

ot complex as it is only for observing E ’s status but not control-

ing E ); (4) uncertainty specification U is prepared manually from

ardware specification or field tests (we checked sensor specifica-

ions for our experimental subjects and conducted trials for con-

rming error ranges for concerned sensors); (5) initial configura-

ion C should be prepared manually, and some of its items need

anual settings (e.g., the space boundary for the simulated envi-

onment for Robot-car in our experimental subjects), while others

an be generated randomly (e.g., obstacles and their layout in the

nvironment for running the car). 

.2. Motivating example 

Let us consider an app that controls a robot-car to explore an

nknown area based on its sensed distances to nearby obstacles.

he car is required to keep some distance from obstacle in any di-

ection for safety. Fig. 2 shows a code snippet of the app’s pro-

ram. The code snippet describes the app’s adaptation logic when

he car is too far away to its right-hand obstacle. Line 163 calcu-

ates a turning angle based on past sensory data. Line 168 makes

he car take an “approaching the obstacle” decision by controlling

he car to drive by leaning to its right-hand obstacle. When the

pp finds that the car is already keeping a safe distance from the

bstacle, Line 171 turns the car again to make it drive in parallel

o the obstacle and continue its exploration. 

The shown code snippet can control the car to explore an

nknown area correctly under ideal settings, i.e., when app-

nvironment interactions do not suffer any uncertainty. However,

t may have problems at the presence of uncertainty. In the sce-

ario illustrated in Fig. 3 , when the car drives to Position “A”, the

pp plans to control the car to turn left by an angle in order not

o crash into the obstacle wall, i.e., following the first dashed line

1. Line 171 calculates the car’s turning angle for turning the car

way from the obstacle, i.e., following the first dashed line D1. It

ses a simple trigonometric calculation based on past sensory data
 past[4] and past[0] ). When considering uncertainty, all dis-

ance data contain error and the car may also not drive in an ex-

ected direction precisely. In some situations, uncertainty may just

ause a smaller turning angle, and after turning the angle the car

ctually drives along the second dashed line D2. This direction, al-

hough not ideal, may not necessarily drive the car to crash into

bstacle immediately. However, in an extreme situation, i.e., the

ifference between past[4] and past[0] is too large due to

ensing error, the car might actually drive along the solid line D3,

hich causes the car to get too close to the wall or even crash

nto the wall, thus leading to a failure (physical crashing or safety

ssertion violated). 

This example discloses the following testing challenges: 

arge state space 

The app takes sensory data as input from its environment, and

heir value combinations can be numerous. Besides, uncertainty

lurs these values in a random way, and this further expands the

pp’s state space. Software testing has to efficiently explore this

arge space to find potential execution traces leading to any fail-

re. 

ong execution trace 

The app may iterate quite a few times before it executes to

 failure, since a bug may manifest only after quite a few itera-

ions. Software testing has to explore as many iterations as pos-

ible within its time budget, since a bug may manifest only after

uite a few iterations. 

The two challenges prevent existing work from effectively test-

ng self-adaptive apps. For random testing, it treats an app as a

lack-box and tries to cover its space as much as possible. Consider

ur Robot-car app that has three input parameters. Assuming that

ach parameter has 100 different values, their combinations can be

p to 100 3 even in a single iteration, not to mention when com-

ined with uncertainty. Our later evaluation shows that random

esting can hardly find execution traces leading to failures like the

ne in Fig. 3 . For guided testing like DSE, it can explore all paths in

ne iteration systematically by solving constraints from these paths

n turn. However, long execution trace makes DSE very ineffective.

or our example, the failure manifests after Position “A”. This ac-

umulation requirement makes DSE have to take great effort to ex-

lore multiple iterations so as to reach that failure point. This can

uickly drain limited time budget, not to mention that long exe-

ution trace can easily make constraint solving fail (i.e., timeout

ithout any result). Our later evaluation shows that DSE can only

xplore first several iterations, missing most bugs like the one in

ig. 3 . 

The two challenges exhibit distinct requirements on testing

elf-adaptive apps. Large space requires systematic space explo-

ation in order not to miss failure-inducing traces, and long ex-

cution trace calls for efficient space exploration in order not to

rain time budget quickly. Random testing and DSE fail to sat-

sfy at least one requirement, while our proposed SIT approach

an meet both. Its interactive app model enables systematic space
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Fig. 2. A code snippet for an example self-adaptive app. 

Fig. 3. A bug manifested by uncertainty in the Robot-car app’s program. 
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exploration, and its test generation allows light-weight sampling-

based testing. They together contribute to effective testing of self-

adaptive apps, as we explain in the following. 

3. Sampling-based interactive testing 

In this section, we present our SIT approach for testing self-

adaptive apps suffering uncertainty. 

3.1. Overview 

Our SIT contains an interactive app model IAM, as introduced

in Section 2 , and a test generation technique based on this model.

Given a self-adaptive app P ’s IAM model, SIT would return a set

of sequences of value assignments to inter P ’s input parameters I P .

Each sequence specifies a series of inputs to P , which runs with

the inputs and eventually fails in its execution. The i -th value as-

signment in a sequence assigns values to P ’s input in its i -th itera-
ion. To facilitate our discussions, we introduce two concepts, input

pace and input space tree, below. 

nput space (IS) 

An input space IS specifies ranges of possible values for input

arameters to P , or more precisely, IS = r 1 × r 2 × . . . × r n , where

 i specifies a range of possible values for P ’s i -th input pa-

ameter according to uncertainty specification U . We represent

n input space as a vector of intervals 〈 [ i P1 low, i P1 up] , [ i P2 low,

 P2 up] , . . . , [ i Pn low, i Pn up] 〉 , in which the i -th interval specifies the

ange of values for P ’s i -th input parameter. 

Input space is due to uncertainty, which changes input values

or app P from deterministic values into non-deterministic values

n a range. Considering that our targeted self-adaptive apps use

ensors to collect environmental conditions, their input parameters

ake real numbers as values. Since each input parameter’s value

an vary in its error range, the whole input space becomes a con-

inuous real-number space. For our Robot-car example, if the ideal
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Algorithm 1 SIT framework 

Input: 

IAM M := (P, E, inter P , inter E , U, C) . 

Output: 

A set of failure-inducing sequences FAIL . 

1: FAIL := ∅ ; 
2: let is 0 be the initial input space of P ; 

3: IS := { is 0 } ; // All input spaces to explore 

4: at 0 := 〈 ( , , G 

0 
P 
, G 

0 
E 

, is 0 ) 〉 ; // G 

0 
P 

and G 

0 
E 

are from C

5: AT := { at 0 } ; // All abstract traces collected so far 

6: while time budge allows do 

7: while IS � = ∅ do // Execute app by sampling 

8: is := removeFrom( IS); // BFS exploration 

9: let at be from AT such that at[LAST]. is = is ; 

10: (SEG fail , SEG succ ) := sampling( M, is , at[LAST]. G P ); 

11: FAIL := FAIL 
⋃ 

appendInput( at , SEG fail ); 

12: AT := AT \ { at } ⋃ 

appendSeg( at , SEG succ ); 

13: end while 

14: AT ′ := ∅ ; // Prepare for new abstract traces 

15: while AT � = ∅ do // Interact with uncertain environment 

16: at := removeFrom( AT ); 

17: ( is , G E ) := interact( M, at[LAST]. o P , at[SEC_LAST]. G E ) ; 

18: at[LAST]. is := is ; 

19: at[LAST]. G E := G E ; 

20: AT ′ := AT ′ ∪ { at} ; 
21: I S := I S ∪ { is } ; 
22: end while 

23: AT := AT ′ ; // New abstract traces ready 

24: end while 

25: return FAIL ; 
istance from the car to its front/left/right obstacle is 5, 10 and 7

espectively, then the app’s input space at this moment is 〈 [4.9,

.1], [9.9, 10.1], [6.9, 7.1] 〉 , assuming uncertainty to be [ −0 . 1 , +0 . 1]

or all input parameters. 

nput space tree (IST) 

An input space tree gives the hierarchical structure for a set of

nput spaces, which provide input values for different iterations in

 self-adaptive app’s execution. In such a tree, if an input space

s the parent node of another input space, it implies that the lat-

er is derived from an iteration whose execution input is from the

ormer. The root of an input space tree is always the initial in-

ut space, which is determined by the initial configuration C in

n app’s IAM model. 

We use such a tree structure to model the relationships be-

ween input spaces for different iterations in an app’s execution.

his follows the intuition that an app’s input values in one itera-

ion can be affected by its input values in its past iterations. An

pp’s input space tree would keep spanning when it takes more

terations in its execution. This is because in each iteration the app

an possibly take different input values from the input space par-

icular for this iteration. Thus, the input space tree models how our

IT approach explores an app’s space. For our Robot-car example,

 possible child node for the preceding input 〈 [4.9, 5.1], [9.9, 10.1],

6.9, 7.1] 〉 can be a new input space 〈 [3.9, 4.1], [9.9, 10.1], [6.9, 7.1] 〉 ,
f the car drives one unit of distance ahead in the current iteration.

To find failure-inducing sequences of inputs, our SIT systemat-

cally explores the input space tree for an app in a breadth-first

earch (BFS) manner, i.e., SIT does not proceed for the input space

f P ’s i -th iteration until it has explored all input spaces of P ’s

(i − 1) -th iteration. When app P starts, its testing interface inter P ’s

nitial values for input parameters I P come from its first environ-

ental sensing, i.e., O E ’s value from E ’s testing interface inter E . Due

o uncertainty, even if O E ’s value is deterministic, I P ’s value can

ary in its corresponding input space. We use U to derive the space

nd it is the root node of P ’s input space tree, which is to be first

xplored by SIT. 

To explore an input space, SIT does not try all possible values in

his space. Instead, it only samples some of them and make these

ampled ones representative in terms of exercising an app’s differ-

nt behavior (sampling details discussed later in Section 3.3 ). For

he first iteration, SIT explores an app’s initial input space to check

hether any specific input i P in this space can lead to a failure. If

es, a failure-inducing sequence (containing only one input in this

ase) is found. Otherwise, for each sampled input i P , since it does

ot lead to any failure, the app’s execution would return a corre-

ponding output o P . SIT feeds each such output o P to environment

 as its input i E and observes E ’s output o E . Similarly, due to uncer-

ainty, this output does not equal to app P ’s input in the next it-

ration. Instead, it corresponds to a new input space. The number

f new input spaces in the next iteration equals to that of sam-

led inputs in the current iteration. Then a new round of the input

pace exploration starts, except that this time SIT has to explore

ore than one input space, and its constructed failure-inducing se-

uences can contain more than one input (for multiple iterations).

his process repeats until a failure is encountered, if one aims to

etect the first failure, or all time budget drains out (e.g., timeout),

f one aims to detect as many failures as possible. 

.2. SIT Framework 

Different from traditional programs, self-adaptive apps typically

xecute the same reaction loop for multiple iterations. Our intu-

tion is to divide the task of testing a self-adaptive app’s execution

nto that of testing its multiple iterations. We use an abstract trace

ith multiple trace segments to record an IAM’s execution. 
bstract trace (AT) and trace segment (SEG) 

We use abstract trace to represent an IAM’s execution. An ab-

tract trace is a sequence of trace segments 〈 at 1 , at 2 , . . . , at n 〉 ,
here each trace segment records the execution information for

ne iteration of the concerned IAM. For ease of presentation, we

se at 0 to represent the IAM’s state before its first iteration. A trace

egment is a tuple at i : ( i P , o P , G P , G E , is ), in which at i .i P and at i .o P
epresent app P ’s input and output, respectively, in its i -th itera-

ion. at i .G P and at i .G E represent values of P ’s and E ’s global vari-

bles after finishing the i -th iteration, respectively. at i .is represents

pp P ’s input space for its next iteration, which is from P ’s interac-

ion with environment E in this iteration. 

As mentioned earlier, we use G P and G E to represent the state of

n IAM during its execution. In practice, all of app P’s global vari-

bles are put into G P , and we instrument P to record G P during the

AM’s execution. For G E , its contained global variables depend on a

iven environment’s observability. If it is an environmental simula-

or or emulator, we use its controlling interfaces to decide those

arameters related to environmental layout and object relation-

hips, and add them into G E . If it is a real environment, we need

o specify a set of elements that can monitor and quantify app P ’s

peration conditions in environment. Then G E includes those vari-

bles that can monitor these specified elements. Such monitoring

an be accomplished by passively monitoring app P ’s sensing input

e.g., for surrounding environmental layout) or actively monitoring

he environment via additional infrastructures (e.g., for precise lo-

ation of a driving car). This process may need manual support, as

lso suggested by existing work ( Fredericks et al., 2014 ). 

Algorithm 1 gives our SIT approach’s framework. It tries to de-

ect as many failures as possible and uses BFS for space explo-

ation. Set FAIL collects failure-inducing sequences, each of which

s a series of inputs to app P and each input specifies values to
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Fig. 4. IAM-based app/environment interaction. 
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P ’s input parameters in one iteration. is 0 is the initial input space

for exploring (Line 2), as explained earlier. at 0 is the state before

the first iteration, in which G 

0 
P 

and G 

0 
E 

are initial values of vari-

ables in P and E from initial configuration C (Line 4). After initial-

ization (Lines 1–5), SIT executes app P with generated tests in two

steps (Lines 6–24). First, SIT uses sampling to explore each avail-

able input space in the current iteration (Lines 7–13). The explo-

ration results in two sets, SEG fail and SEG succ , which collect failing

and passing executions, respectively, for the current iteration (Line

10). SEG fail goes to FAIL for failure-inducing sequences since sam-

pled inputs have caused failure (Line 11). SEG succ extends the cur-

rent abstract traces with new trace segments since app P success-

fully executes to its output (Line 12). Second, SIT makes app P in-

teract with its environment E for each of the current abstract traces

(BFS has multiple executions for each iteration; Lines 14–23). For

app P ’s output from each abstract trace, the interaction between P

and environment E leads to P ’s new input (recall O P ⇒ I E ⇒ O E ⇒ I P ).

Due to uncertainty in the interaction, each value i P grows into a

space is as P ’s input in its next iteration (Line 17). When values of

the last trace segments in the current abstract traces are all ready,

this process goes back to the beginning to start the next round of

iteration. It repeats until all time budget drains out. If one aims to

detect the first failure only, the algorithm can terminate once the

first failure is detected at Line 11. 

In an ideal environment where uncertainty does not exist, we

have I P = O E and I E = O P , on values, which make the method

interact at Lines 17 quite simple. When uncertainty exists, we

have I P = O E ±
� 

E and I E = O P ±
� 

P (conceptually). Here, we use �
to denote the error introduced by the uncertainty specification. As

such, a specific app’s input i P should consider this error in practice.

We represent this by growing i P into an input space, each dimen-

sion of which extends from one point to a range as specified by the

uncertainty specification U defined in the IAM. This treatment ap-

plies to many real-world cases. Even if an actual error range may

not necessarily be continuous, this treatment avoids missing po-

tential failure-inducing inputs. Fig. 4 illustrates this interaction pro-

cess. Another issue concerning method interact is that how one

derives O E based on O P . If E can be manipulated, we directly set E

to at [SEC_LAST]. G E , the environment’s state by the end of the last

iteration, and execute E on O P to derive O E . If E cannot be manip-

ulated, we have to reset E according to the initial configuration C ,

and execute E from the beginning using the abstract trace. 

3.3. Sampling-based test generation 

Here we explain more about how tests are generated. Our SIT

explores app P ’s input space is through systematic sampling of

is , rather than trying all possible values in is . Its goal is to try

those sampled inputs only such that they lead to different execu-

tions in P . This “difference” can be easily judged by their execution

traces. Fig. 5 illustrates this sampling process. SIT first samples all

vertexes at boundaries of input space is , and obtains correspond-

ing execution traces by taking these vertexes as inputs (each ver-

tex/input leads to one execution trace). Based on the similarity of

the sampled execution traces, SIT decides whether to split the cur-

rent space for further exploration. Each splitting brings multiple

smaller input spaces, whose number relies on the dimension of the
riginal input space. This splitting and exploration process repeats

ntil an input space is sufficiently small or its vertexes do not lead

o different executions for app P . Among all sampled executions,

ailing ones go to SEC fail and passing ones go to SEC succ for further

rocessing as in Algorithm 1 . 

More precisely, SIT measures the similarity of execution traces

rom an input space’s all boundary vertexes and decides whether

o further split this input space for new exploration. It first derives

he set of input values from the current input space’s all boundary

ertexes. Then it executes P with these input values for one itera-

ion in turn, and records their execution traces, which are basically

aken branches in the executions. After that, the similarity among

hese execution traces can be measured based on the overlapping

f their taken branches. We assign each branch a unique id and

alculate a hash value based on the id s of all taken branches in

n execution trace. By this hash value, one can quickly distinguish

ifferent execution traces. Besides, similarity can also be calculated

or a set of hash values from the aforementioned executions. For

xample, given an input space with four boundary vertexes (i.e., a

wo-dimensional space), these vertexes correspond to four inputs.

e feed the four inputs to P , observe its execution traces, and ob-

ain four corresponding hash values. The similarity among these

our hash values decides whether one needs to further split this

nput space. Currently, we apply a simple strategy, i.e., considering

he hash values the same or different only. We use a threshold for

his strategy, which is set to one. It trivially implies that the in-

ut space should be further split if any hash value differs from the

thers. 

When we decide to further split an input space, it is split in half

t each dimension, i.e., selecting a midpoint between two vertexes

f each dimension. Thus we obtain 2 n smaller input spaces from

he original one, where n is the space’s dimension. This seems to

row exponentially, but many of the input spaces do not have to

e explored. We discuss their optimizations later in Section 3.4 .

esides, we stop splitting an input space if it has been sufficiently

mall. We name this “sufficiently small” criterion space-splitting

hreshold . The setting of this threshold value needs to balance our

IT approach’s testing coverage and efficiency. A smaller threshold

alue enables one to sample an input space more precisely to find

ailing executions for an app. However, it also incurs more time

ost in exploring each input space, and results in less explored in-

ut spaces that SIT can explore within a given time budget. On

he other hand, a larger threshold value enables one to sample an

nput space more efficiently, and thus SIT can explore more input

paces within the same time budget. However, one may miss few

ailing executions. In this work, we set the threshold to be 1/16 of

rror ranges from the uncertainty specification U to balance SIT’s

ffectiveness and efficiency. We also investigate the impact of dif-

erent threshold values on SIT’s effectiveness and efficiency in the

ater evaluation. 

Our sampling-based test generation was inspired by existing

ork on white-box sampling ( Bao et al., 2012 ). The idea works for

esting of self-adaptive apps due to the following two observations.

irst, a self-adaptive app P ’s input parameters take values from

ensors, which typically report real numbers in continuous ranges.

his enables us to split an input space and obtain meaningful sam-

les as P ’s inputs. Second, an app’s adaptation logic typically relies
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Fig. 5. Sampling-based test generation. 
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n a value range for its input to cope with uncertainty in its en-

ironmental interaction, rather than on specific value points. For

xample, PhoneAdaptor changes its profile when its collected GPS

osition falls in ranges like “home” or “office”, rather than a spe-

ific position at home or in office 2 . These two observations concern

 self-adaptive app’s input and output, respectively, and our SIT ex-

loits them to systematically split an input space and test an app’s

ifferent behavior. 

Algorithm 2 gives our sampling-based test generation. At the

eginning, it explores only one input space (Line 3), but later it

ay explore more if the space is further split. In each exploration,

he algorithm investigates one input space, and checks whether its

ertexes (as app P ’s inputs) lead to any failure, which is recorded

Line 11). All execution traces in one exploration are calculated for

heir hash values (Line 15), which, after a similarity and space size

heck (Line 17), decide whether to further split the current input

pace (Line 18). 

.4. Optimizations 

As mentioned, sampling for an input space can lead to this

pace being split, when the samples from the space drive the app

eing tested to behave differently. Although we control the limit

f splitting an input space into smaller ones, the growth of their

umber can be quick. Therefore, we introduce optimizations in our

IT approach to alleviating this issue. 
lgorithm 2 Sampling-based test generation 

Input: 

IAM M := (P, E, inter P , inter E , U, C) , input space is , and G P . 

Output: 

Two sets of trace segments SEC succ and SEC fail . 

1: SEC succ := ∅ ; 
2: SEC fail := ∅ ; 
3: IS := { is 0 } ; // All input spaces to explore 

4: while IS � = ∅ do 

5: is := removeFrom( IS); 

6: H := ∅ ; // Storing hash values for execution traces 

7: for each vertex i P of is do 

8: set( P, G P ); // Set P ’s global variables to G P 

9: (seg, branches ) := execute( P , i P ); // Execute P with input i P 
10: if P fails then 

11: SEC fail := SEC fail 

⋃ { seg} ; 
12: else 

13: SEC succ := SEC succ 
⋃ { seg} ; 

14: end if 

15: H := H 

⋃ { hash (branches ) } ; 
16: end for 

17: if !similar( H) && !tooSmaller( is ) then 

18: I S := I S 
⋃ 

split( is ); 

19: end if 

0: end while 

21: return ( SEC fail , SEC succ ); 
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In our sampling-based test generation, vertexes for testing in

ne iteration and input spaces for exploring across different itera-

ions can both be redundant. We optimize them by pruning. 

Fig. 6 (a) illustrates the first type of redundancy, vertex retest

edundancy . It occurs when an input space is split into smaller

nes in one iteration. In Fig. 6 (a), input space is 0 is split into four

maller ones, is 1 , ..., is 4 . For is 0 , SIT has tested its four vertexes, v 1 ,

 2 , v 3 , v 4 . When exploring is 1 , SIT tests its four vertexes, v 1 , v 5 , v 6 ,

 9 , in which v 1 is retested. When exploring is 2 , SIT tests v 5 , v 2 , v 9 ,

 7 , in which v 5 , v 2 , v 9 are retested. Such retesting is redundant. We

se a coordinate-based mechanism to name different input spaces

nd cache hash values for tested vertexes. This enables us to test

ach vertex at most once. 

Fig. 6 (b) illustrates the second type of redundancy, space sub-

umption redundancy . It occurs when two abstract traces from two

terations have their app’s global variables G P values equal but

ne’s input space subsumes the other’s (considering their last trace

egments only). Then exploring the latter’s input space is redun-

ant. Here, G P refers to those global variables in app P , as men-

ioned earlier when we introduce our IAM model. We use G P only

i.e., no need to compare G E ) as an input space already carries suf-

cient information for environment E. G P values are derived based

n the instrumentation made for app P, as mentioned earlier. We

efine two sets of global variables having “equal” values as follows:

or real-number variables (e.g., float or double types), their value

ifferences should be less than a reasonable small threshold, say

.01; for other variables (e.g., integer, string or char types), their

alue should be identical or their equals methods return true.

ith this definition, ta 1 [LAST]. G P and ta 2 [LAST]. G P in Fig. 6 (b) can

e equal, since their task ’s values are both “TURNING_RIGHT”, and

ast ’s values are very close to each other due to similar environ-

ental conditions. 

. Evaluation 

In this section, we discuss the evaluation of our SIT ap-

roach with real-world self-adaptive apps. Section 4.1 introduces

he implementation of our SIT approach. Section 4.2 presents

ur research questions for study, as well as variables and met-

ics for measuring these variables derived from the questions.

ection 4.3 introduces the selected subjects. Section 4.4 dis-

usses issues relating to our preparations for experiments.

ection 4.5 elaborates on our experimental design and proce-

ure. Section 4.6 presents and analyzes the experimental results,

s well as answering earlier raised research questions. Finally,

ection 4.7 discusses the threats to the validity of our experiments.

.1. SIT implementation 

We implemented our SIT approach in Java 8. It consists of

 packages, 34 classes and 8700 LOC (lines of code) with-

ut comments. Each of the packages represents a module

f our SIT approach, which includes exploring , sampling ,
nteraction and recording . The first two modules imple-

ented our SIT framework, as shown in Algorithms 1 and 2 . Mod-

le interaction drives the target app and its environment by
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Fig. 6. Two types of redundancy in sampling. 
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4

following our IAM model. It also provides interfaces for observ-

ing and controlling the app and environment. Module recording
records the execution trace of the IAM and analyzes it for testing

support. 

4.2. Research questions 

Research questions and variables 

We aim to answer the following research questions: 

RQ1: How does SIT compare to random testing (RT), dynamic sym-

bolic execution (DSE), and caiipa (a mobile app testing tool

Liang et al., 2014 ) for effectiveness and efficiency in testing self-

adaptive apps? 

RQ2: How do the settings of SIT, e.g., uncertainty level and space-

splitting threshold, affect the effectiveness and efficiency of SIT

in testing self-adaptive apps? 

RQ3: Do our optimizations help on SIT’s testing efficiency, and in

what way? 

We compare SIT with RT and DSE since we believe that they are

good representatives for unguided and guided testing approaches.

We also chose caiipa to compare its effectiveness in detecting bugs

with SIT, since caiipa, as a mobile app testing tool ( Caiipa, 2014 ),

also considers the impact of environment in generating its test in-

puts. 

The independent variables of our evaluation include the specific

approach used for self-adaptive app testing (i.e., SIT, RT, DSE or cai-

ipa), uncertainty level ( i.e., the scale rate of error ranges speci-

fied by uncertainty specification U , varying from 20–100% of orig-

inal error ranges), space-splitting threshold (for deciding when to

stop splitting an input space, ranging from 1/4 to 1/64), and ap-

plied optimization setting (i.e., reducing vertex retest redundancy

only, reducing space subsumption redundancy only, reducing both,

or without any optimization). The dependent variables include the

effectiveness and efficiency in testing self-adaptive apps. 

We measure effectiveness by the number of detected bugs and

branch coverage. We measure efficiency indirectly by comparing

the number of detected bugs given the same time budget for dif-

ferent testing approaches for RQ1 and RQ2. For RQ3, we measure

efficiency by comparing the time of exploring the same iterations

in executing experimental apps for SIT with different optimization

settings. 

Metric explanations 

We further explain two metrics in measuring the effectiveness,

namely, detected bugs and branch coverage. For detected bugs, we

note that manifesting a bug in a self-adaptive app differs from that

in a traditional program. Such a bug has to manifest in a certain
nvironment in which a self-adaptive app runs for a couple of iter-

tions. Therefore, the environment’s configuration plays an impor-

ant role in the bug detection. Recall that we use initial configura-

ion for this purpose as defined in IAM. Thus in our experiments,

e consider an app P and an initial configuration C (for initializing

 and its associated E ) as a test instance . We define failure as an

pp P violating any of its assertions under its initial configuration

 within a given time budget. If a testing approach can detect any

ailure for a test instance ( P, C ) within the time budget, it is said to

etect the bug associated with this test instance. 

For branch coverage, we define it as follows, considering that a

elf-adaptive app can execute the same code snippet many times

by multiple iterations). Let B i be the set of visited branches dur-

ng the i -th iteration in app P ’s execution, and B be the set of

ll branches of P . Then for an execution that contains n itera-

ions, its branch coverage is defined as | ⋃ 

1 ≤i ≤n B i | / | B | , i.e., all vis-

ted branches are accumulated for an execution in calculating the

ranch coverage metric. 

.3. Experimental subjects 

We selected three real-world self-adaptive apps as our exper-

mental subjects. They run on different hardware platforms and

ndertake different adaptive tasks, including automated driving-

ontrol (Robot-car Yang et al., 2014 ), runtime profile-switching

PhoneAdaptor 2 ) and city-wide navigation ( SECONDO, 2009 ). 

The Robot-car app is the motivating example discussed earlier.

he app for experiments contains a full set of functionalities such

s environmental sensing, map drawing and collision avoidance.

t has been under development over five years in our university,

nd participated in various research activities ( Yang et al., 2014;

u et al., 2012; 2013 ). The app contains 3100 LOC. 

The PhoneAdaptor app was originally proposed by Sama et al.

2008) for illustrating common bug patterns in adaptive apps, and

ater implemented by L iu et al. 2 for public access. It runs on

ndroid phones, and automatically adapts a phone’s profile (e.g.,

ing mode and vibration status) according to sensed environmental

onditions and user-configured rules. The app uses various built-

n phone sensors, e.g., GPS, Bluetooth and accelerometer. The app

ontains 1400 LOC. 

The SECONDO app simulates traffic conditions in large-scale

ities for scientific experiments ( SECONDO, 2009 ). Mobile users

avigate in a city, Berlin in our evaluation, to find places of inter-

st or track moving objects (e.g., a driving bus or walking person).

he app was developed by a research team at Fernuniversitat Ha-

en, and has participated in quite a few research projects ( Xu and

uting, 2012; Duntgen et al., 2009 ). The app contains 38,000 LOC. 

.4. Experimental preparation 

We explain our preparations for the experiments below. 
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.4.1. IAM preparation 

Each experimental subject app has a corresponding IAM model,

nd the model includes, besides the app P itself, also an environ-

ent E , initial configuration C and uncertainty specification U , as

xplained earlier in Section 2.1 . We further explain how we pre-

ared the IAM models for the three apps as follows. 

he Robot-car app 

The app came along with an accompanying environmental sim-

lator and we used it as its running environment E . The app’s ini-

ial configuration C specifies the space where the concerned car

rives. We manually set the space boundary for the simulated

pace. Then random obstacles and their layouts were automati-

ally generated within the specified boundary for the space. Be-

ides, a pair of initial position and direction as startup parame-

ers for the car were also randomly generated as part of C . The

pp’s uncertainty specification U was from the car’s field test re-

ults ( Yang et al., 2014 ), containing error ranges for its installed

ltrasonic sensors. 

he PhoneAdaptor app 

We setup up the PhoneAdaptor app by strictly following its

riginal specification given by Sama et al. (2008) , which includes

even states and 18 adaptation rules. The app’s environment E con-

ists of a smartphone emulator AVD (Android Virtual Device) and

ther supporting software modules. E is able to feed simulated

ensory data to the app through its host phone according to how

he environment is built and how the user walks in this environ-

ent. 

For initial configuration C , we manually set the space boundary

or E where the app’s host phone stays. Then random blocks and

heir locations were automatically generated inside E . We also ran-

omly generated a pair of start point and end point for the phone’s

imulated user. More precisely, these initial settings of the environ-

ent served as constraints for specifying functions and contexts

or blocks (e.g., home, meeting room or exercise field) in the en-

ironment. These constraints were used to generate corresponding

ensor inputs when the user walked from the start point to the

nd point in this simulated environment. The app’s host phone is

upposed to switch its profile based on changing environmental

onditions and user pre-configured rules (e.g., enabling Bluetooth

ode when entering a car or switching off ring tone when enter-

ng a meeting room). The app’s uncertainty specification U mostly

oncerns GPS sensor, and its error range was set according to ex-

sting studies ( Toftkjær and Kjærgaard, 2012; Shang et al., 2003 ). 

he SECONDO app 

We made the SECONDO app run in the simulated Berlin city as

entioned, and we used its benchmark toolkit MWGen as its en-

ironment. It could automatically build and customize a simulated

ity of Berlin and its residents according to preset controlling pa-

ameters. It could also observe and manipulate a simulated visitor

n its built Berlin city for testing purposes. 

The app’s initial configuration C specifies the whole street net-

ork of the city, which contains more than 30 0 0 streets, 40 0 0

uildings, 80 bus routes and 10 metro routes. We also used MW-

en to automatically generate a pair of start point and destination

oint for a visitor (taking a car, taxi, or simply walking) to this

ity, who is supposed to travel from the start point to the desti-

ation point. MWGen generated the travel plan based on its anal-

sis on real-world people for their traveling activities. The visitor

s supposed to reach the destination, by following the app’s sug-

ested navigation. The app obtains the visitor’s GPS location every

00 m for optimizing its navigation suggestions. The app’s uncer-

ainty specification U also concerns GPS sensing and was set sim-

larly as in the PhoneAdaptor app. Due to GPS noise, a suggested
oute may deviate from the optimal route and may lead the user

o enter forbidden places. 

.4.2. Other preparations 

ubject instrumentation and assertion check 

We instrumented the three experimental subjects for collect-

ng their execution traces (e.g., taken branches, input and output

alues) as well as values of their global variables G P . We used as-

ertions embedded in the three experimental subjects for expos-

ng failures. SIT and other testing approaches were adapted for be-

ng able to monitor whether any assertion in an app was violated

hen feeding test inputs to the app and observing its execution.

or the Robot-car app, its assertions check whether its concerned

ar crashes into any obstacle and whether the car is too far from

ts right-hand obstacle. For the PhoneAdaptor app, its assertions

heck whether any well-known fault patterns (e.g., adaptation race

r cycle Sama et al., 2008 ) exist. For the SECONDO app, its as-

ertions check whether its visitor’s current route is optimal and

hether he has been led into any forbidden place. 

We illustrate how the assertions work by explaining two asser-

ions in the SECONDO app. One assertion records the length of the

isitor’s actually taken route as navigated by the app, and com-

ares it with the length of a pre-calculated optimal route from

he start point to the destination point in the city. When the two

engths are found to have a big difference, say 20%, the assertion

s violated. The other assertion records a set of locations that rep-

esent forbidden locations for this city. If the visitor is found to

ppear in any of these locations, the assertion is violated. 

nvironmental preparation 

We also modified the code for environmental simulators or em-

lators for collecting their execution traces (e.g., global variables,

nput and output values). While capturing the latter two is rel-

tively easy, we collected values of specific parameters from the

imulators or emulators as values of their corresponding environ-

ental global variables G E . For the Robot-car app, we collected val-

es of the location and direction of the car and obstacle layout as

or G E . For the PhoneAdaptor app, we collected its user’s spacial

elationships between the preset blocks, e.g., inside home and out-

ide a meeting room as for G E . For the SECONDO app, we collected

he user’s GPS location and his used transportation way as for G E . 

pproach implementation 

We implemented RT and DSE for comparison purposes. While

he former is easy, we built the latter by adapting Comedy

 Jin et al., 2015 ), a concolic debugging tool built on Java PathFinder

 JPF, 2013 ). Our DSE implementation connects multiple iterations

f an app’s reaction loop and solves their path constraints. We

eplaced JPF’s original constraint solver with Z3 ( De Moura and

jørner, 2008 ), which is considered to be state-of-the-art in bet-

er solving constraints of different data types. 

We implemented a controller for running caiipa and connecting

t to Monkey (2013) for testing the PhoneAdaptor app. We did not

ompare SIT’s effectiveness with caiipa on the other two apps since

hey are not Android apps and cannot be supported by caiipa. We

lso implemented a tool to validate the bugs detected by caiipa. 

.5. Experimental design and procedure 

est instances 

Besides the three experimental subjects, we used

 MuJava, 2013 ) to generate 135 mutants from the original apps,

5 for each, after excluding those that do not compile. MuJava

sed its built-in mutation operators, like arithmetic operator

eplacement (AOR), conditional operator replacement (COR) and

ogical operator replacement (LOR), for mutation. 
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Table 1 

Comparison of detected bugs for SIT, RT and DSE. 

Approach All subjects Robot-car PhoneAdaptor SECONDO 

(636 test instances) (212) (212) (212) 

SIT 581 (91 .4%) 184 (86 .8%) 202 (95 .2%) 195 (92 .0%) 

RT 313 (49 .2%) 76 (35 .8%) 108 (50 .9%) 129 (60 .8%) 

DSE 432 (69 .0%) 126 (59 .5%) 147 (69 .3%) 159 (75 .0%) 

Table 2 

Comparison of bug distribution for SIT, RT and DSE. 

Bug groups All subjects Robot-car PhoneAdaptor SECONDO 

( + , + , + ) 242 62 83 97 

( + , + , - ) 45 8 13 24 

( + , - , + ) 160 56 54 50 

( + , - , - ) 138 62 52 24 

( - , + , + ) 18 4 7 7 

( - , + , - ) 8 2 5 1 

( - , - , + ) 12 4 3 5 
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For each original app, we prepared 32 different initial config-

urations. Considering that different initial configurations may lead

to different experimental results (e.g., detected bugs), we randomly

generated these initial configurations. For each mutated app, we

randomly selected four initial configurations from 32 ones for scale

consideration. Thus, we obtained a total of 636 test instances for

experiments, 96 test instances for original apps (3 × 32), which

are denoted as test set O , and 540 test instances for mutated apps

(135 × 4), which are denoted as test set M . 

Experimental procedure 

We conducted experiments with the 636 test instances to an-

swer research questions, which took more than 600 hours. All ex-

periments were conducted on a PC with an Intel(R) Core(TM) i7

CPU@4.5GHz and 8GB RAM. We first evaluated and compared the

effectiveness and efficiency of SIT, RT, DSE and caiipa in testing

self-adaptive apps, in which each test was given a 10-min time

budget. Then we studied how different settings, e.g., uncertainty

level and space-splitting threshold, affect SIT’s testing effectiveness

and efficiency based on the 96 test instances from the original

apps. Finally, we compared SIT’s testing efficiency with different

optimization settings also based on the 96 test instances. In all ex-

periments, whenever a test instance failed (app bug detected), we

moved on to the next test instance. In other words, each test in-

stance could fail at most once for each testing approach. In this

sense, detected bugs are considered distinct since the same test

instance will not fail twice for the same testing approach. 

For RQ1, we compared detected bugs for SIT, RT and DSE using

all 636 test instances. We also compared detected bugs for SIT and

caiipa using the 212 test instances derived from the PhoneAdaptor

app, which is the only app caiipa can support, as mentioned ear-

lier. Since mutation might change an app’s branches accidentally,

we compared branch coverage for SIT, RT and DSE using only the

96 test instances from test set O (based on original apps). We then

compared testing efficiency (by means of the number of detected

bugs given the same time budget) for SIT, RT and DSE using all 636

test instances. Finally, we also compared SIT, RT and DSE’s testing

efficiency within a one-hour time budget using 50 randomly se-

lected test instances from all 636 test instances, in order to vali-

date our choice of the 10-min time budget. 

For RQ2, we first studied the effect of different uncertainty lev-

els. We compared detected bugs for SIT, RT and DSE with differ-

ent uncertainty levels (i.e., scaling the applied error range to 20–

100% of the original error ranges specified by uncertainty speci-

fication U ) using the 96 test instances from test set O (based on

original apps). Then we studied SIT’s performance with different

space-splitting threshold values, namely, 1/4, 1/8, 1/16, 1/32 and

1/64 of the error ranges from U . We compared detected bugs and

testing efficiency (by means of the number of detected bugs given

the same time budget) for SIT with different threshold values also

based the 96 test instances from test set O . 

For RQ3, we compared SIT’s testing efficiency (by means of

the time of exploring the same iterations in executing experi-

mental apps) with different optimization settings using the 96

test instances from test set O . The optimization strategies includes

no optimization, reducing vertex retest redundancy only, reduc-

ing space subsumption redundancy only, and reducing both redun-

dancy types. 

4.6. Experimental results and analyses 

4.6.1. RQ1: Comparison of effectiveness and efficiency in testing 

self-adaptive apps 

We first compare detected bugs and branch coverage for testing

effectiveness, and then compare for testing efficiency. 
IT’s comparison with RT and DSE on detected bugs 

Table 1 compares SIT, RT and DSE in their detected bugs with

espect to all 636 test instances (212 for each subject). We ob-

erve that SIT consistently detected more bugs in these test in-

tances. The improvement is 27.3–51.0%, 25.9–44.3% and 17.0–31.2%

or the three subjects, respectively. Overall, SIT improved the de-

ection rate by 22.4–42.2%. DSE performed better than RT as ex-

ected, since it used the same time budget to explore different

rogram paths in apps. Besides, we observe that all approaches

etected less bugs for the Robot-car app than the other two sub-

ects. After a closer study, we found that the Robot-car app has

elatively more difficult bugs. These bugs manifested after 15 iter-

tions, while those for the PhoneAdaptor and SECONDO apps did

fter 5–10 iterations. Then given the same time budget, all ap-

roaches detected less bugs for the Robot-car app. Furthermore,

e did not observe any bug detected in the first iteration. This ex-

ibits how testing self-adaptive apps differs from, and is also more

hallenging than, testing of traditional programs. 

The results also reveal the different nature of RT and DSE. In

elatively shallower iterations (e.g., before the 5–th iteration), DSE

etected more bugs than RT (93.4–128% more). This is because

T can easily miss many dedicated paths in apps due to its sim-

le (random) strategy for generating test inputs while DSE uses a

onstraint solver to consider every possible path carefully. On the

ther hand, in relatively deeper iterations (e.g., after the 10–th it-

ration), RT detected more bugs than DSE (236–268% more). This

s because DSE cannot go for too deep iterations when given the

ame time budget since constraint solving is computation-intensive

hile RT can easily go to those deep iterations. 

Table 2 compares the distribution of the detected bugs for SIT,

T and DSE. We partition all detected bugs into seven groups, by

hether they can be detected by a particular approach. This is an-

otated by a triple ( x, y, z ), in which x indicates “yes” by “ + ” or

no” by “ − ” for SIT, and y and z for RT and DSE in a similar way.

able data can tell the uniqueness of an approach in testing self-

daptive apps. In brief, most (over 95%) of the bugs detected by

he other approaches could also be detected by SIT. On the other

and, altogether 138 bugs (23.6%) were detected by and only by SIT.

he counterparts for RT and DSE are 8 and 12, respectively, which

re much less (94.2% and 91.3% less). This suggests that our SIT is

ndeed effective in detecting bugs for self-adaptive apps and this

ffectiveness does not rely on certain initial configurations. 

We also observe that both RT and DSE were indeed able to de-

ect some bugs that could not be detected by SIT approach (6–12

r 2.8–5.7% bugs detected by RT, and 8–12 or 3.8–5.7% bugs de-
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Fig. 7. Comparison of branch coverage for SIT, RT and DSE (with respect to different subjects). 
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Fig. 8. Comparison of testing efficiency for SIT, RT and DSE (overall, 10-min time 

budget). 

Table 3 

Comparison of detected bugs for SIT and caiipa. 

Approach Detected bugs False positives Distribution of true bugs 

( + , + ) ( + , − ) ( − , + ) 

SIT 202 (95 .2%) 0 42 160 3 

caiipa 209 (98 .6%) 164 (78 .5%) 
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ected by DSE). We analyzed these bugs. For the bugs detected by

T but not by SIT, we found that most of them (83.3–87.5%) were

etected after the 10–th iteration in executing an app. For the bugs

etected by DSE but not by SIT, most of them (70–87.5%) were de-

ected before the 5–th iteration in executing an app. Such results

ave been caused by the different nature of RT and DSE. We fur-

her explain it below. 

First, RT can go into relatively deeper iterations in executing an

pp when given the same time budget, due to its simple (random)

trategy for generating test inputs. This explains why RT could de-

ect some bugs SIT did not detect in relatively deeper iterations

e.g., after the 10–th iteration). However, this strategy also sacri-

ced RT’s completeness in testing, as RT failed to detect many bugs

69.3%) in relatively shallower iterations (e.g., before the 5–th iter-

tion) as compared to SIT. SIT does not suffer this limitation, be-

ause it tries to avoid exercising the same path in app execution by

ystematically exploring different partitions in an input space. Our

xperimental results ( Fig. 7 ) show that SIT achieved higher branch

overage (12.3–47.9% higher) than RT. 

Second, DSE considers every path in executing an app, and tries

hat path as long as it can generate a corresponding test input by

onstraint solving. As such, it can exercise more paths in relatively

hallower iterations (e.g., before the 5–th iteration) in executing an

pp, when given the same time budget. This explains why DSE

ould detect some bugs SIT did not detect in relatively shallower

terations. However, as constraint solving is computation-intensive,

SE cannot go for too deep iterations when given the same time

udget. Actually, DSE explored less iterations (22.2–116.7% less)

han SIT when given the 10-min time budget. SIT does not suffer

his limitation, because its test input generation is light-weighted.

ur experimental results ( Fig. 8 ) show that SIT detected bugs much

aster than DSE. SIT detected 90% bugs (524 in number) it could

etect in 300 s, while DSE cost 550 s (83.3% more time) for de-

ecting 90% bugs (390 in number). If one fixes the time budge to

e 300 s for DSE as well, it can detect only 117 bugs, which is

uch less than 524 bugs detected by SIT (77.7% less). 

IT’s comparison with caiipa on detected bugs 

Table 3 compares SIT and caiipa in their detected bugs with

espect to the 212 test instances derived from the PhoneAdpator

pp. We observe that caiipa detected slightly more bugs (7 or 3.4%

ore) than SIT, but most of its detected bugs are false positives

78.5%). The reason for caiipa’s high false positive rate is that it
ailed to consider the complete interaction and adaptation loop be-

ween the app and its environment. In other words, the relation-

hips between I P values across different iterations in generated test

nputs were not respected. For example, caiipa might generate a

equence of failure-inducing test inputs indicating that the user’s

wo consecutive GPS locations are too far away with each other

or the user to reach in one iteration. In our experiments, we re-

layed sequences of failure-inducing test inputs from the bug re-

orts of caiipa in our IAM model to check whether the app and

ts environment interact with each other as expected. In each iter-

tion, we executed the IAM model to derive the app’s input space

s for the next iteration. If the I P value of the next iteration (from

he bug reports of caiipa) did not fit into the space is , then the

orresponding bug was considered as a false positive. 

SIT did not incur any false positive since it already validated all

etected bugs through concrete execution of the app in its envi-

onment. Considering true positives only, SIT detected 339% more

ugs than caiipa. We also analyzed the bug distribution for SIT and

aiipa, as in Table 3 . Apparently, most of the bugs detected by cai-
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Fig. 9. Comparison of testing efficiency for SIT, RT and DSE (with respect to different subjects, 10-min time budge). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Comparison of testing efficiency for SIT, RT and DSE (overall, one-hour time 

budget). 
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ipa can also be detected by SIT except only three ones. This shows

our SIT’s unique effectiveness in detecting bugs for self-adaptive

apps, as compared to other approaches catered for testing mobile

apps. 

SIT’s comparison with RT and DSE on branch coverage 

Fig. 7 compares SIT, RT and DSE in branch coverage with respect

to the 96 test instances from the original apps. Data were aver-

aged for each subject. For each approach, its connected line seg-

ments illustrate achieved branch coverage from its first iteration

to the last iteration it could reach within the given time budget.

We observe that SIT achieved the highest branch coverage (12.3–

47.9% higher than RT and 13.8–21.4% higher than DSE), as well

as the most iterations (6.7–36.8% more than RT and 22.2–116.7%

more than DSE). This explains why SIT detected more bugs than

RT (31.2–54.3% more) and DSE (17–27.3% more) as reported earlier.

It is easily understandable that RT achieved low coverage since its

strategy was purely random in exploring input spaces, but DSE’s

low coverage needs more explanations. DSE tries to consider ev-

ery path in executing an app, and exercises that path as long as

it can generate a corresponding test input by constraint solving.

However, this can be very time-consuming and cause it to fail to

balance the testing’s completeness and efficiency. The experimen-

tal results show that DSE achieved the highest branch coverage at

the beginning since it worked in a guided way, but this strength

was quickly gone when it stopped exploring more iterations within

the given time budget. Beside, DSE also suffered failed constraint

solving. For example, in the SECONDO app DSE’s explored branch

coverage was instead lower than that of our SIT even for the same

number of iterations. 

SIT’s comparison with RT and DSE on testing efficiency 

Fig. 8 compares SIT, RT and DSE on testing efficiency (by means

of the number of detected bugs given the same time budget) with

respect to all 636 test instances. Fig. 9 gives detailed results with

respect to each subject. Overall, SIT detected bugs much faster than

the other two approaches. It detected 90% bugs it could detect

within all time budget in 300 s (50% budget) only, while the coun-

terpart time is 500 s (83% budget) and 550 s (92% budget) for RT

and DSE, respectively. Besides, RT is unstable in that it detected

more bugs early and less later for the PhoneAdaptor and SECONDO

apps, but things reversed for the Robot-car app. This reflects its

inherent randomness. Regarding DSE, it seems to miss quite a lot
f bugs in the early stage, especially for the Robot-car app. We

onjecture that this is because DSE spent too much time on con-

traint solving, and this made it detect much less bugs within first

everal minutes. That is, given the same time budget, while DSE

as working on early iterations, SIT already worked on later itera-

ions. As such, for the same time budget, SIT can detect bugs from

ore iterations than DSE. Besides, failed constraint solving also re-

uced the bugs that can be detected by DSE, while SIT does not

equire constraint solving at all. Altogether, we observe that our

IT is both light-weight and effective. We also notice that although

he PhoneAdaptor app uses a non-manipulatable environment, it

id not take SIT much longer time to test this app. This is because

honeAdaptor’s executions contain less iterations (usually less than

0), which mean restarting app executions does not bring much

verhead. 

Fig. 10 compares SIT, RT and DSE on testing efficiency (by

eans of the number of detected bugs given the same time bud-

et) with a one-hour time budget for 50 test instances randomly

elected from all 636 test instances. The result shows that most

etected bugs by SIT and DSE were found in the first 10 min, e.g.,

2.6% bugs for SIT and 77.1% bugs for DSE. This justifies our selec-

ion of 10 min as the time budget for most experiments (data of

T are not considered due to its random nature). 

nswer to RQ1 

Our SIT approach can test self-adaptive apps effectively and ef-

ciently. Compared with existing approaches (RT, DSE and caiipa),
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Fig. 11. Comparison of detected bugs for SIT, RT and DSE under different uncertainty levels (with respect to different subjects). 
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IT can detect more bugs, as well as more unique bugs that can-

ot be detected by other approaches. It can also detect bugs more

uickly by exploring more iterations and covering more branches. 

.6.2. RQ2: Study of impact of different settings on SIT 

IT’s comparison with RT and DSE on detected bugs using different

ncertainty levels. We studied how the uncertainty level affects

he bug detection in terms of detected bugs for different testing

pproaches. Fig. 11 compares SIT, RT and DSE in their detected

ugs under different uncertainty levels with respect to the 96 test

nstances from test set O . Data were averaged for each subject. We

bserve that for all testing approaches, the number of detected

ugs consistently increases with the growth of uncertainty level.

or example, comparing the setting of 100% uncertainty level to

hat of 20% uncertainty level, SIT detected 414–650% more bugs, RT

etected 475–850% more bugs, and DSE detected 525–600% more

ugs. This shows that uncertainty indeed plays an important role

n causing self-adaptive apps to fail, and more severe uncertainty

mplies more failing cases, as well as more responsible program

ugs (failing to consider such cases). We also observe that SIT de-

ected always the most bugs under all uncertainty levels, showing

ts effectiveness in testing self-adaptive apps. Besides, the differ-

nces between SIT and the other two approaches increase with the

rowth of uncertainty level. This is probably because increasing the

ncertainty level causes the growth of an app’s state space, which

hen leads to more challenges for traditional testing approaches to

etect bugs. 

IT’s performance using different space-splitting threshold values

n testing effectiveness. We also studied how the space-splitting

hreshold affects the effectiveness and efficiency of our SIT ap-

roach in testing self-adaptive apps. Table 4 compares SIT’s de-

ected bugs with different threshold values based on the 96 test in-

tances from test set O . The column “Bugs” represents the number

f detected bugs, column “Iter.” represents the average number of

terations explored by SIT, and column “B.C.” represents the branch

overage. The experimental results show that SIT detected bugs

atisfactorily when the threshold was set to 1/16 of error ranges,

nd also roughly detected the most bugs (2–12 or 7.4–74.6% more)

s compared to those under other threshold value settings. This

an be explained by the fact that SIT achieved the highest branch

overage (1–29% higher than those under other settings) when the

hreshold value was set to 1/16 of error ranges. 
Table 4 also compares the distribution of the detected bugs of

IT under different threshold value settings, in which column “U.

ugs” represents the number of unique bugs that can only be de-

ected under one threshold value setting, and “C. Bugs” represents

he number of common bugs that can be detected under at least

hree threshold value settings. The results tell that different thresh-

ld values indeed enable SIT to detect some unique bugs (3.1–

2.5%) that cannot be detected under other threshold value set-

ings. On the other hand, most of the detected bugs (62.5–93.6%)

an be detected under at least three threshold value settings. This

uggests that SIT’s effectiveness in testing self-adaptive apps is not

imited to specific space-splitting threshold value settings. 

Fig. 12 compares testing efficiency (by means of the number

f detected bugs given the same time budget) of SIT with differ-

nt threshold value settings. We observe that a larger threshold

alue could enable SIT to detect bugs more quickly than a smaller

hreshold value when given the same time budget, since it helps

IT to exercise an app into deeper iterations. So large threshold

alues can help quickly answer whether an app can fail within a

imited time budget, while small threshold values can be used to

xplore different failing executions precisely when the time budget

s sufficient. 

nswer to RQ2 

Regarding the uncertainty level, SIT can detect more bugs with

he growth of uncertainty level associated with self-adaptive apps.

IT detected always the most bugs under all uncertainty levels, as

ompared with existing approaches (RT and DSE). Regarding the

pace-splitting threshold, SIT’s testing effectiveness peaked when

he threshold was set to 1/16 of error ranges, with which it can

oughly detect the most bugs as compared to other threshold set-

ings when given the same time budget. SIT’s testing efficiency de-

reased with the growth of the threshold value, in which a larger

hreshold value could enable SIT to detect bugs more quickly than

 smaller threshold value when given the same time budget. 

.6.3. RQ3: Study of impact of different optimization settings on SIT 

Our earlier comparisons were made based on SIT with all opti-

izations enabled. We finally study how the optimization setting

elps on SIT’s testing efficiency. Fig. 13 compares SIT’s testing ef-

ciency (by means of the time of exploring the same iterations in

xecuting experimental apps) with different optimization settings
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Table 4 

Comparison of testing effectiveness for SIT under different space-splitting threshold values. 

Threshold values Robot-car PhoneAdaptor 

Bugs U. Bugs C. Bugs Iter. B.C.(%) Bugs U. Bugs C. Bugs Iter. B.C.(%) 

1/4 19 1 16 33 58 21 1 19 11 48 

1/8 24 3 20 28 83 25 2 21 11 61 

1/16 26 4 20 21 85 30 3 26 11 76 

1/32 21 1 18 18 64 31 4 27 10 77 

1/64 18 1 17 13 56 23 2 19 9 54 

Threshold values PhoneAdaptor 

Bugs U. Bugs C. Bugs Iter. B.C.(%) 

1/4 17 1 15 24 26 

1/8 24 1 22 18 30 

1/16 29 3 24 16 39 

1/32 27 3 22 15 36 

1/64 25 1 24 12 30 

Fig. 12. Comparison of testing efficiency for SIT under different space-splitting threshold values (with respect to different subjects). 

Fig. 13. Comparison of testing efficiency for SIT with different optimization settings. 
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or the 96 test instances from the original apps (data averaged for

ach subject). We considered four optimization settings, namely,

isabling all optimizations (denoted as “Without OPs”), reducing

ertex retest redundancy only (denoted as “With OP1”), reducing

pace subsumption redundancy only(denoted as “With OP2”), and

educing both redundancy (denoted as “With both OPs”). We ob-

erve that when disabling all optimizations, SIT could only explore

p to 4–5 iterations before it drained out all time budget. The

eduction of explored iterations ranged from 63.6% to 80.8% for

ifferent subjects, which is significant. Considering different opti-

izations, reducing space subsumption redundancy is more effec-

ive than reducing vertex retest redundancy, which enables SIT to

xplore 50.0–72.2% more iterations for different subjects. This is

ecause vertex retest redundancy only causes a polynomial am-

lification on the number of explored input spaces, while space

ubsumption redundancy causes an exponential amplification. We

ote that for PhoneAdaptor, the “With both OPs” curve did not

each the limit of 600 s and this is because our optimized SIT

nished all its test instances by then. Without optimizations, SIT

pent time in an exponential way, while with optimizations, it was

lmost in a linear way. This makes our optimized SIT useful in

ractice. 

nswer to RQ3 

Our optimizations significantly increase SIT’s efficiency and

calability in the bug detection for self-adaptive apps. Specifically,

educing space subsumption redundancy is more effective than re-

ucing vertex retest redundancy. 

.7. Threats to validity 

nternal threats 

We set 10 min as the time budget for testing each test instance

n experiments, and this might threaten the internal validity of our

valuation, causing different com parison conclusions. This setting

s for scale-controlling since we had to compare three testing ap-

roaches with respect to 636 test instances, which are many. We

ote that we are comparing different approaches’ bug detection

apabilities under a limited time budget, which is a realistic set-

ing in practice. Besides, 10 min suffices for this purpose as bugs

etected in the first 10 min occupied about 80% bugs detected

n one hour, as mentioned earlier. Furthermore, our experimental

ata show that SIT detected bugs clearly faster than RT and DSE,

ith increased branch coverage and more explored iterations. The

hree aspects together justify SIT’s effectiveness. The likelihood of

T and DSE suddenly beating SIT with a more time budget is low. 

xternal threats 

Two threats might weaken the external validity of our evalua-

ion. First, we conducted experiments with third-party simulators

r emulators. This is for controlling purposes, e.g., time control-

ing as the Robot-car app needs recharging after 15-min driving,

nd parameter controlling as we could get and set values of envi-

onmental variables easily, as mentioned earlier. Nevertheless, our

IT approach does apply to real-world apps with some platform-

pecific support. For example, The PhoneAdaptor app can already

un on real Android phones, since Android provides direct access

o its resource status (e.g., ring mode, vibration level and Bluetooth

witch). For the Robot-car app, the only required support is to re-

et the car’s location to an earlier one if required. Currently, we do

ot have a mechanical infrastructure help on this (e.g., using an-

ther robot to move the car with its arm, which can be expensive

nd time-consuming). Although using a mechanical infrastructure

an introduce error in resetting environmental variables, our SIT

pproach already considers this by allowing the modeling of error
anges in uncertainty specifications. This makes our SIT approach

till useful for future extensions with such mechanical support. 

Second, we selected only three experimental subjects and the

umber is not many. This is because a comprehensive evalua-

ion requires the support of suitable environments, which should

e observable and resettable. Although the selected subjects are

ot many, we tried to make them representative as real-world

elf-adaptive apps. These subjects cover different functionalities

e.g., automated driving, location-based service and navigation) and

lso use different prevailing platforms (e.g., ARM-based robot-car,

ndroid-based smartphone and commodity PC). Therefore, our se-

ected experimental subjects can represent real-world self-adaptive

pps to some extent. Nevertheless, trying our SIT approach on

ore types of apps and platforms still deserves for better evalu-

tion. 

heoretical reliability 

It is possible that our implementation biased for our own

IT approach. To alleviate this threat, we made all approaches

nder test use a shared app/environment interaction module

 interaction , as discussed earlier in Section 4.1 ), which feeds

he output from one side (app/environment) as the input to the

ther side (environment/app), and drives the interaction continu-

lly. Each approach only implements its internal logic for deciding

est inputs. We implemented RT ourselves as it is simple, and im-

lemented DSE and caiipa based on available code from existing

ork ( Caiipa, 2014; Jin et al., 2015 ). 

. Related work 

In this section, we discuss related work on handling uncertainty

or self-adaptive apps and testing for self-adaptive, context-aware,

obile or numeric programs. 

ncertainty in self-adaptive apps 

Uncertainty causes challenges to quality assurance for self-

daptive apps. Ramirez et al. (2012) presented a taxonomy of

ncertainty factors typical for self-adaptive apps. They include

equirement uncertainty, design uncertainty and runtime uncer-

ainty. Many pieces of work focus on alleviating impact of de-

ign uncertainty on self-adaptive apps. Ghezzi et al. (2013) pro-

osed an adaptation framework to manifest non-functional uncer-

ainty via model-based development. Famelis et al. (2012) used

artial models to specify uncertainty and reason its impact on app

unctionalities. Esfahani (2011) proposed framework support for

esigning decision-making functions for self-adaptive apps, which

elps avoid misguided behavior and subjective preferences. Differ-

nt from them, we in this article focus on runtime uncertainty and

heck whether a self-adaptive app’s implementation has consid-

red uncertainty precisely and adequately. 

esting self-adaptive apps 

Some pieces of work focus on testing techniques to ensure

uality of self-adaptive or context-aware apps. Fredericks et al.

2014) used utility functions to guide the design and adaptation

f test cases for self-adaptive apps. Xu et al. (2012) proposed mon-

toring error patterns to track responsible defects in context-aware

daptation. Tse et al. (2004) relied on metamorphic relations to de-

ide whether contexts and their upper-layer apps behave abnor-

ally. Ramirez et al. (2011) proposed discovering specific combi-

ations of environmental conditions that produce violated behav-

or in adaptive systems. These pieces of work used different ob-

ervations, but in general still relied on random testing. This im-

lies that they do not guarantee systematic exploration of an app’s
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space. As a contrast, our SIT approach explores an app’s input

space and its corresponding behavior in a systematic and guided

way. 

Testing context-aware apps 

Some pieces of work on testing context-aware apps also con-

sider interaction between apps and their environments. Griebe and

Gruhn (2014b ) proposed a model-based testing approach that gen-

erates test cases using model transformation on context-enriched

design-time system models. Amalfitano et al. (2013) used prede-

fined event patterns to generate context event traces to explore

different behaviors for context-aware apps. Jang et al. (2005) pro-

posed a framework to simulate both context-data production and

service execution for testing context-aware apps. The framework

is also able to generate simulated context data based on user-

specified operational components, such as virtual sensors, devices,

and even human beings. Wang et al. (2007) improved test cover-

age for context-aware apps by utilizing context-switching points in

apps. Lu et al. (2006) proposed a family of test adequacy criteria to

cover new data flows induced by interactions between an app and

its underlying middleware. They then extended the work to sup-

port testing apps with external inconsistency resolution services

Lu et al. (2008) , which call for new coverage criteria. These pieces

of work echo our work in that both consider challenges from in-

teractions between an app with its environment, but our work fur-

ther considers uncertainty in the interactions, which include both

environmental sensing and behavioral adaptation. 

Testing mobile apps 

Self-adaptive apps resemble some mobile apps in that such

apps have to acquire inputs from environments. Liang et al.

(2014) proposed contextual fuzzing to build a comprehensive li-

brary of contexts of different types for mobile apps and a learning-

based technique to explore the context space for apps testing.

Rege et al. (2015) used existing user traces to generate realistic and

correlated context traces automatically for the propose of guid-

ing simulator-based mobile apps testing. Griebe and Gruhn (2014a )

gave a model-based approach to generating useful contextual in-

puts for mobile apps by deducing context information from design-

time system models. These pieces of work differ from our work in

that they treat environment as a simple source for an app’s in-

put, while the app’s adaptation and reaction on the environment

is largely simplified or overlooked. Our approach focuses on the

many iterations between apps and their environments, and this

implies that both apps and their environments can affect each

other. 

Other pieces of work focus on testing event-based mobile apps

or GUI testing. Yeh et al. (2013) proposed an approach to analyz-

ing GUI models during the testing process and generating corre-

sponding event sequences for testing based on GUI models de-

rived from mobile apps. Adamsen et al. (2015) presented an ap-

proach that leverages existing test cases such that each test case

is systematically exposed to adverse conditions where certain un-

expected events may interfere with the test execution. Anand

et al. (2012) studied how to generate sequences of events automat-

ically and systematically based on concolic testing. The approach

alleviated the path-explosion problem by checking conditions from

program executions to identify subsumption relationships between

different event sequences. We believe that these approaches may

not be directly applicable to testing self-adaptive apps since our

targeted apps may not have GUIs (e.g., two of our experimental

subjects do not contain any GUI, while the remaining one has a

very simple GUI but that is not our testing focus; we are testing

an app’s interaction with its environment) and may not necessar-

ily be event-based. 
esting numeric programs 

Self-adaptive apps also resemble some numeric programs in

hat such apps often take sensory data as inputs, which range in

 scope. Some pieces of work focused on testing numeric pro-

rams. For example, Chen et al. (2010) studied the diversity nature

f adaptive random testing, which is useful for partitioning input

pace and testing numeric programs. Bao et al. (2012) proposed

hite-box sampling to test scientific computation programs with

nputs of uncertainty. Chaudhuri et al. (2011) used static analysis to

uantify a numeric program’s robustness to inputs of uncertainty,

y proving whether the program has encoded a functionality in a

obust way. The test generation part of our work was inspired by

hite-box sampling, but we extended its idea to multi-dimensional

ensory data for multiple iterations, and enhanced its effectiveness

y taking into account sensing and adaptation uncertainty as well

s optimizations for effective iteration exploration. 

. Conclusion and future work 

In this article, we focus on testing self-adaptive apps. We ana-

yzed characteristics of such apps and studied their challenges to

oftware testing. We proposed a novel approach, named SIT, to

esting self-adaptive apps in a systematic and light-weight way.

ur experimental evaluation reported promising results, showing

hat SIT can detect more bugs by covering more code and explor-

ng more iterations, but with smaller time cost, as compared with

xisting work. 

Our work still has limitations. It currently relies on app-specific

upport if an app’s running environment cannot be easily manip-

lated for testing. Still, it is understandable since such apps them-

elves also require additional hardware to run as platforms, and

uch support can be regarded as necessary components of plat-

orms, not to mention that some platforms (e.g., Android system)

lready have such support. 

Besides, the work also brings new research opportunities. First,

e assume that input parameters to an app P should take values

rom continuous domains since SIT uses sampling to explore P ’s

nput space. Continuous input values enable one to split an input

pace precisely and obtain meaningful samples as P ’s input values.

his setting applies to many real-world self-adaptive apps, which

ake sensory data as inputs, which are naturally continuous. How-

ver, this setting does not directly apply to apps with discrete in-

ut values. One reason is that dichotomy no longer works for split-

ing an input space of discrete input values.. Even if it can be alle-

iated by special treatment, a more serious reason is that app P ’s

ehavior may depend more likely on certain discrete input values

or decision making. This makes P ’s behavior may no longer change

radually with the change in input values, and SIT might miss crit-

cal program paths in its exploration in testing P . One possible way

s to first learn the relationships between the program paths P will

ake and the range of input values fed to P , and then use such re-

ationships to guide the splitting of an input space. Clearly, this

eeds further research and validation, and we keep it as future

ork. 

Second, the assertions we used to define program failures were

omposed manually in apps. Such assertions are closely related to

he apps’ specifications and only use observable variables of app P

nd environment E , i.e., the inputs and outputs of P and E . It might

e possible to derive such assertions automatically for self-adaptive

pps, as suggested by existing work, e.g., Zoom-In ( Pastore and

ariani, 2015 ) and MuTest ( Fraser and Zeller, 2010 ). One advantage

f automatic assertion generation is that it requires less knowledge

bout targeted apps than manually writing assertions for them.

nother advantage is that automatically-generated assertions could

e defined on values of internal variables (i.e., not sensor variables)
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n such apps, which could provide a more accurate monitoring of

n app’s internal status. We are also working along this line. 
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