
Simulated or Physical? An Empirical Study on Input Validation
for Context-aware Systems in Different Environments

Jinchi Chen
State Key Laboratory for Novel Software Technology,

Nanjing University
Department of Computer Science and Technology,

Nanjing University
Nanjing, China

jcchen.nju@gmail.com

Yi Qin
State Key Laboratory for Novel Software Technology,

Nanjing University
Department of Computer Science and Technology,

Nanjing University
Nanjing, China

yiqincs@nju.edu.cn

Huiyan Wang
State Key Laboratory for Novel Software Technology,

Nanjing University
Department of Computer Science and Technology,

Nanjing University
Nanjing, China

cocowhy1013@gmail.com

Chang Xu
State Key Laboratory for Novel Software Technology,

Nanjing University
Department of Computer Science and Technology,

Nanjing University
Nanjing, China

changxu@nju.edu.cn

ABSTRACT
Context-Aware Systems (a.k.a. CASs) integrate cyber and physical
space to provide context-aware adaptive functionalities. Building
context-aware systems is challenging due to the uncertainty of the
real physical environment. Therefore, input validation for context-
aware systems plays a significant role in keeping the systems ex-
ecuting safely. Input validation approaches have been proposed
to monitor and guard the executions of context-aware systems.
However, few of these works (17%, 2 out of 12) evaluated their
approaches with a real context-aware system in a real physical
environment. In this paper, we study and compare the effective-
ness of input validation approaches for context-aware system in
both a simulated and a physical environment. We built a testing
platform, RM-Testing, based on DJI RoboMaster S1 robot car. We
implemented three up-to-date input validation approaches, and
evaluated their effectiveness in improving the success rate of the
robot car’s executions. The results show that the selected input
validation approaches are effective in guarantee the safe execution
of context-aware systems, which improve the success rate by 82%
in the simulated environment, and 50% in the physical environment.
However, the effectiveness of these approaches does vary in dif-
ferent environment. Thus, we believe that such CASs-based input
validation works should be evaluated in the physical environment
to better validate their effectiveness and usefulness.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Internetware’20, May 12–14, 2021, Singapore, Singapore
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8819-1/20/11. . . $15.00
https://doi.org/10.1145/3457913.3457919

KEYWORDS
context-aware systems, self-driving cars, input validation, testing
infrastructure
ACM Reference Format:
Jinchi Chen, Yi Qin, Huiyan Wang, and Chang Xu. 2020. Simulated or Phys-
ical? An Empirical Study on Input Validation for Context-aware Systems in
Different Environments . In 12th Asia-Pacific Symposium on Internetware
(Internetware’20), May 12–14, 2021, Singapore, Singapore. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3457913.3457919

1 INTRODUCTION
The vision of Internetware calls a shift of software paradigm from
executing in a static and closed environment to executing in a dy-
namic and open environment[1]. The developing of Context-Aware
Systems (a.k.a. CASs) echoes that call by integrate cyber and physi-
cal space to provide context-aware adaptive functionalities. These
systems continually sense environmental changes, make decisions
based on their preprogrammed logic, and then take physical actions
to adapt to the sensed changes.

Empirical evidence shows that building context-aware systems
is challenging and easily error-prone [15, 24, 25]. One of the reasons
is that these programs have to address the complexities incurred
during their interaction with the physical environment. Different
from traditional programs, context-aware systems mainly execute
in the physical environment, which might produce uncertain inputs
for the systems. Such uncertain inputs are unpredictable while de-
veloping a context-aware system, and they could lead the system to
abnormality or failure if are not processed appropriately. Therefore,
there is a strong need for validating the input of context-aware
systems to prevent them from entering fatal errors (e.g., crashing
of Tesla self-driving car [5] and failing of the auto-pilot program of
Boeing 737-MAX8 [6]).

Many research efforts have been made to validate the input of
context-aware systems from different perspectives, including con-
text consistency constraint checking [11], invariant checking [19],

https://doi.org/10.1145/3457913.3457919
https://doi.org/10.1145/3457913.3457919

Internetware’20, May 12–14, 2021, Singapore, Singapore Jinchi Chen, Yi Qin, Huiyan Wang, and Chang Xu

and deep learning model input pruning [9]. However, few of these
works evaluated their proposed approaches with a real context-
aware system in a real physical environment. We conducted a prim-
itive empirical study and find that only 17% of these works evaluates
their approaches in physical environments (2 out of 12), and oth-
ers are only evaluated either in a simulated environment 33% (4
out of 12), or with pre-collected execution traces of context-aware
systems 50% (6 out of 12). This result echoes a latest survey [4] on
self-adaptive systems that one of the major challenges in building
adaptive systems is to “providing empirical evidence for the value
of self-adaptive (in the real environment)” and avoid validating
the research effort with simple example applications in the simu-
lated environment. As such, one could naturally ask two questions
that whether those input-validation-approaches work effec-
tively in a physical environment, andwhether the difference
between a simulated environment and a physical environ-
ment affect the effectiveness of those approaches.

The major challenge to answer these two questions is to build a
testing infrastructure in physical world for testing context-aware
systems. The testing infrastructure should connect the subject pro-
gram under test with the physical platform that is capable of sensing
the surrounding environment and taking physical actions. Building
such a testing infrastructure not only requires efforts on imple-
menting the software modules that support testing and validation
approaches, but also require efforts to refit and modify the physical
platforms to enrich their sensibility and controllability, as well as
building the physical scenario.

What is more, the difference between the simulated environment
and the physical environment makes one cannot directly apply
those input validation approaches on a real context-aware system
in a real physical environment. For example, in related work the
application will drop inputs under validity threshold directly to
achieve better accuracy perform [9]. However, when it comes to a
real robot car recognizing the road sign by deep learning method,
the same strategy can lead to failure if all the images cannot reach
the fixed threshold.

In this paper, we address these challenges by building a test-
ing platform, RM-Testing, and evaluated three input validation ap-
proaches in both the simulated and the real environment. We select
autonomous driving, one of the “killer applications” of context-
aware systems. We refitted a DJI RoboMaster S1 robot car with
additional range sensors to enrich its sensibility towards the sur-
rounding environment. We built a controller module to enable au-
tonomous control of the robot car with subject autopilot programs.
We implemented and adapted three input validation approaches,
namely ECC [11], CoMID [19], and DISSECTOR [9], within our RM-
Testing platform to validate the environmental information pushed
to the subject autopilot program.

We conducted extensive experiments to answer the aforemen-
tioned two questions. We build a scenario of urban road network in
both a simulated environment based on Unity [3], and a physical
environment based on RM-Testing. We evaluated the effectiveness
of the three input validation approaches in keeping the autopilot
program executing safely. The experimental results show that the
selected input validation approaches are effective in guaranteeing
the safe executions of context-aware systems, which improve the
success rate of the robot car’s executions by 82% in the simulated

environment, and 50% in the physical environment. However, the ef-
fectiveness of these approaches does vary in different environment
(32 percentage point). Thus, we believe that such works should
be evaluated in the physical environment to better validate their
effectiveness and usefulness.

In summary, this paper makes the following contributions:
•We built a testing platform, RM-Testing, for evaluating input
validation approaches with a real context-aware system (DJI
RoboMaster S1 robot car) in a physical environment.
•We implemented and adapted three up-to-date input validation
approaches within our RM-Testing platform.
• We conducted extensive experiments in both the simulated
environment and the physical environment to evaluate the effec-
tiveness of the input validation approaches. The experimental
results show the difference between the approaches’ effective-
ness in different environments.
The remainder of this paper is organized as follows. Section 2

introduces DJI RoboMaster S1 and three input validation methods
associated with this work. Section 3 gives an overview of our testing
platform for context-aware system. Section 4 introduces how we
adapted the aforementioned approaches in our platform. Section 5
presents a primitive evaluation of the autopilot program based on
our platform. Section 6 discusses related work, and finally Section 7
concludes this paper and discusses future work.

2 PRELIMINARIES
In this section, we first introduce the background of self-driving
cars and DJI RoboMaster S1 robot car. Then we briefly describe
three input validation approaches for context-aware systems.

2.1 Self-driving car and DJI RoboMaster S1
Self-driving cars are usually equipped with many sensors to sense
the environment. They analyze the current state based on the sensed
environmental information, then use the predefined logic to deter-
mine their driving routes.

As a typical context-aware system, the autopilot program of a
self-driving car controls the car’s behavior to adapt to the sensed
environmental information. Basically, the execution of an autopilot
program consists of three steps: 1) sensing the car’s surrounding
environment and receiving environmental information; 2) making
decisions on the car’s future route using the predefined driving
strategy; 3) controlling the car’s direction and speed to follow the
determined driving route.

RoboMaster S1 is an educational robot car designed by DJI. It
is equipped with four omnidirectional wheels, which enables the
robot car to move towards any direction and spin turn around
within a small area. The robot is also equipped with a Wi-Fi module
and an FPV camera, which enable one to connect the robot car
to a computer and control its movement from a first-person-view
(shorted as “FPV”) in real time. However, as an educational robot,
RoboMaster S1 has very limited sensors (four contact sensors to
sense the car’s collision with obstacles) and restricted programming
supports (a scratch-program-based UIwith limitedAPIs). As a result,
we have to refit both its hardware and software, in order to build
our testing platforms for context-aware systems.

Simulated or Physical? An Empirical Study on Input Validation for Context-aware Systems in Different Environments Internetware’20, May 12–14, 2021, Singapore, Singapore

2.2 Input Validation for Context-aware
Systems

Context-aware systems leverage environmental information to pro-
vide autonomous and adaptive services. However, the uncertainty of
environmental information introduces several challenges towards
the failure-free context-aware systems as follows.

• Inconsistent context. The noise of sensing data weakens
the system’s ability to understand the environment [7]. Due
to the limitation of physical measurement, error is inevitable
as during the system’s sensing phases, which could further
affect the decision-making and action-performing phases,
and finally leads the system into failure.

• Uncertain scenarios.To improve the productivity and cope
with infinite kinds of environmental dynamics, software de-
velopers only hold certain assumption on a context-aware
system’s execution environment. Such simplification of en-
vironmental assumptions could the system facing uncertain
scenarios that could cause the system’s pre-defined logic
fail[8].

• Unfitted DL model input. Deep learning (denoted as DL)
models are trainedwith pre-collected data. However, a context-
aware system could face complex and diverse running en-
vironments during its execution. If a DL model’s running
environment and training environment are completely dif-
ferent, the input from the running environment may be out
of the scope of the system’s handling capability, resulting in
a reduction in the quality of the system’s executions[9].

Many research efforts have been made to address the above chal-
lenges. In this work, we focus on three branches of input validation
techniques, namely constraints checking, invariant checking, and
DL model input pruning. From each of these branches, we select
one approach to study their effectiveness in both the simulated and
the physical environment, with respect to improving the execution
safety of context-aware systems. In the following part of this sec-
tion, we briefly introduce the selected input validation techniques.

Constraints checking. Noise in sensing data usually causes
context inconsistency. As a result, validating contexts helps pre-
venting such inconsistency from being received by the system. One
of the most popular approaches to detect context inconsistency is
constraints checking[10][11][14]. Constraints describe the restric-
tions on the relationship between multiple pieces of contexts[13].

𝑓 ∷= ∀𝛾 ∈ 𝑆(𝑓) | ∃𝛾 ∈ 𝑆(𝑓) | (𝑓) ∧ (𝑓) | (𝑓) ∨ (𝑓) | (𝑓) → (𝑓) |

¬(𝑓) | 𝑏𝑓𝑢𝑛𝑐(𝛾, … , 𝛾)

Figure 1: Constraint language syntax.

In this work, we study the effectiveness of Entire Constraints
Checking (ECC)[11] approach in both the simulated and the physi-
cal environment. We use a constraint language based on first-order
logic[11] to specify consistency constraints. The syntax of the con-
straint language is shown in Figure 1, where bfunc represents user-
defined functions. The parameters of these functions are context
instances and the return value is a boolean variable.

ECC checking context-consistency constraint in three steps as
follows.

(1) Converting predefined consistency constraints into a consis-
tency computation tree (CCT), where bfunc is represented
as left node and other formulas are represented as nonleaf
nodes.

(2) Specifying a post-order traversal of the CCT to calculate
truth values of all nonleaf nodes. The truth value of the root
node is the final checking result.

(3) Repairing the detect consistency error using three kinds of
strategy, namely, drop-all, drop-latest and drop-random.

Invariant checking.Uncertain scenarios introduce unpredictable
situation that beyond the capability of pre-defined logic of context-
aware systems. Many systems use assertions to check whether the
systems’ surrounding environments enter abnormal states. How-
ever, manually specified assertions can generally only detect obvi-
ous failure but not potential abnormal state.

One promising way to detect potential abnormal state is to con-
duct automatically generated invariant checking in the runtime.
Before the system is put into use, we automatically generate invari-
ants that the program should satisfy when it runs normally. The
violation of any invariant means that the system may enter a failure
state soon, so the system can take corresponding repair measures
to preventing failure.

Invariant detectors like Daikon[16] achieved great results in
traditional software testing. Some researchers also proposed invari-
ant generation templates for robotic systems[17]. In this work, we
study the effectiveness of Context-aware Multi-Invariant Detection
(CoMID) approach [19]. The main procedure of CoMID is as follows.

(1) Defining invariant templates according to actual needs. For
example, 𝑥 >= 𝐶 is an invariant template about the value
range of variable 𝑥 .

(2) Collecting several safe execution traces of the system. For
template 𝑥 >= 𝐶 , we need to collect all values of variable 𝑥
during the safe executions.

(3) Deriving an invariant which follows a predefined template
and satisfies collected traces.

(4) Checking invariants while the subject context-aware system
executing. If any of the invariant is violated, the system
would perform a pre-defined remedy action to prevent the
system from entering uncertain scenarios.

DL model input pruning. In recent years, deep learning ap-
proaches are widely used in many context-aware systems to assist
their recognition of the physical environment (i.e., image recog-
nition and speech recognition). Most of these approaches use su-
pervised learning, whose DL models need to be trained using data
collected from certain scenarios. As a result, the system’s input from
the running environment may be out of the model’s capability.

In response to this problem, some DL model input validation
methods for deep learning have been proposed. In this work, we
study the effectiveness of DISSECTOR [9] approach in both the
simulated and the physical environments. The main idea of this
method is to distinguish and prune the inputs that exceeds the
model’s handling capability to prevent the data from being used in
the actual decision-making. Since the remaining inputs are within
its capability, they are more reliable to be used.

More specifically, DISSECTOR tracks how the model interprets
its input and generates a PVscore to denote the input’s validity. The

Internetware’20, May 12–14, 2021, Singapore, Singapore Jinchi Chen, Yi Qin, Huiyan Wang, and Chang Xu

value range of PVscore is [0,1]. An input is more likely to be within
the capability of the model (i.e. being valid) if its PVsocre is closer
to 1.

3 A TESTING PLATFORM FOR
CONTEXT-AWARE SYSTEM

We built a testing platform, RM-Testing, on DJI RoboMaster S1. The
architecture of the platform is shown in Figure 2. Basically, the
platform connects a DJI RoboMaster S1 robot car and a subject
autopilot program under test. The platform mainly consists of four
parts, namely sense, control, input validation, and info. The first
two parts enables the subject program to sense the robot car’s sur-
rounding environment and control the robot car to move and rotate,
respectively. The input validation implements the selected three
input validation approaches, and provide high-quality environmen-
tal information to the subject program. The info collects execution
information from all other modules for analyzing the program’s
execution states.

In the following parts of this section, we will describe the sense,
control and info modules in detail. The input validation module will
be introduced in the next section.

3.1 Sense in RM-Testing
The modules in sense enable the subject autopilot program to ac-
quire environmental information. As discussed in Section II that
the RoboMaster S1 only equipped with four contact sensors, we
refitted the robot car to enrich its sensibility. We installed range
sensors in the forward, rear, left, and right of the robot to obtain
the horizontal distance between the robot and other objects. Since
RoboMaster S1 does not open the underlying development board
interface and wireless network module, we also installed an Ar-
duino UNO 3 (and its power supply device) and an ESP8266 WIFI
module for data transmission. The Arduino UNO 3 is responsible
for sending signals to each sensor to trigger distance measurement
and waiting for response signal, then calculates the current reading
based on the time difference between two signals. The ESP8266
WIFI module sends data to a computer in LAN.

Besides the sensors’ data, we also modify the robot car’s FPV
controller to enable the autopilot program acquire the FPV camera’s
images. The autopilot program can use encapsulated methods to
control the camera to better monitoring its surrounding environ-
ment.

The raw environmental information, such as sensor readings
and images, is managed by a sensing input module. This module
collects all raw environmental information from the hardware such
as sensors and camera, and feeds it to other modules that require
the data. Sensing input connects providers (i.e., sensors and camera)
and the consumers (i.e., input validation module and the autopi-
lot program) of environmental information in a pub/sub manner.
More specifically, both of the hardware that provide environmental
data, and the modules that require environmental data first register
their name and related data types in sensing input. Then sensing
input would collect the raw data from the providers, and push the
collected data to the consumers. Sensing input uses FIFO queues
to store the collected environmental information, considering the
different producing/consuming speed of the data.

3.2 Control in RM-Testing
The modules in control enables the autopilot program to control the
robot car to move with enriched APIs, comparing with the original
APIs provided by the RoboMaster S1 IDE. We implemented a robot
controlmodule based on the FPV controller of the robot car.With the
original FPV controller, users can use keyboard to move and rotate
the robot car. More specifically, pressing “W”, “S”, “A”, “D”, “left”
and “right” keys would control the robot car move forward, back,
left, right, rotate counterclockwise and clockwise, respectively. To
enable the automatic control, we used pywin32 library to simulate
keyboard actions of FPV mode, and encapsulated those simulated
keyboard actions as methods for the autopilot program to invoke
as shown in Figure 3.

3.3 Info in RM-Testing
To facilitate program debugging, error location, and data analy-
sis, we implement a logging module based on the Python logging
library. The execution record of any module in the platform will
be output to the log files. We use three logging levels, including
“DEBUG”, “INFO”, and “WARNING”. The “DEBUG” information con-
cerns the updates of corresponding variables in RM-Testing. The
“INFO” information describes the pre-defined events produced from
the RM-Testing platform. The “WARNING” information specifies
the checking results produces by the implemented approaches in
input validation module.

4 INPUT VALIDATING IN RM-TESTING
In this section, we describe the three input validation approaches
implemented in RM-Testing platform. As we discussed in Section 1
that these existing approaches cannot be directly applied to real
context-aware systems, we focus on the modifications we made
during implementing these approaches.

4.1 Constraints checking
In this module, we implemented and modified the ECC approach for
constraints checking with RoboMaster S1 robot car. We designed
specific constraints that are effective for the robot-car-scenario
based on previous work[10][11][14]. An effective constraint need
to deal with errors that occur frequently in the scenario, so that they
can efficiently improve the quality of validated context. In addition,
the constraints should avoid missing detection (i.e., false negative
instances) and false alarms (i.e., false positive instances). Thus, in
order to design effective constraints, we first checked the execution
traces of the robot car and analyzed main reasons for its failure.
Based on the observation, we designed three types of constraint
templates, which mainly concern the rapid changes of the range
sensors’ readings. After determining the constraint templates, we
tried with different parameter settings and selected the best one
according to their effectiveness.

The constraints we used in the system are shown in Figure 4.𝑚
and 𝑛 are constants that can be specified manually according to the
observed execution traces. These constraints are mainly used to
alleviate problems like random errors and sudden changes due to
transient sensor failure. When a constraint is found to be violated,
we repair the consistency error with drop-latest strategy. Once

Simulated or Physical? An Empirical Study on Input Validation for Context-aware Systems in Different Environments Internetware’20, May 12–14, 2021, Singapore, Singapore

FPV

camera

Range

sensors

Sensing input

Robot control

Log

DJI RoboMaster

S1 robot car

(physical platform)

Constraints

checking

Invariant

checking

DL model input

pruning

Autopilot program

(subject program)

input validation

FPV controller

image distance

validated environmental informationcontrol instructionsRM-Testing

DEBUGG/INFO/

WARINING

info control

sense

Figure 2: The architecture of RM-Testing platform.

(a) Before refitting. (b) After refitting. (c) FPV control.

Figure 3: Refitting and control of the car.

the context instance is validated, constraints checking stores it in a
buffer for the autopilot program to use.

Since the speed of context-producing may be different from
the speed of contraint checking, we use stacks to store the con-
text instances pushed to the contraint checking module. Context
of different patterns are pushed into different stacks. The stack’s
first-in-last-out property enables us to check constraints on the
latest context instances, which would improve the responsiveness
of the module.

4.2 Invariant checking
In this module, we implemented and modified the CoMID approach
for invariant checking with RoboMaster S1 robot car. The main chal-
lenges to applying CoMID approach is to design effective invariant
template. In the original CoMID approach, it simply uses Daikon in-
variant inference engine to derived the invariants. However, in our
RM-Testing platform, Daikon is less-effective for two reasons. On
the one hand, Daikon requires instrumenting the subject program

to record the execution traces, while in our RM-Testing platform,
we cannot assume the availability of the subject program’s source
code. On the other hand, Daikon’s invariant templates are designed
for the internal variables of a program, while the environmental in-
variants mainly focus on the external variables of the environment.

As a result, we have to design our own invariant templates for
RoboMaster S1 robot car. Similar to the designing of constraint
template in constraints checking, we observed execution traces
of the robot car to determine the template of the environmental
invariants. We also optimized the settings of the invariants’ param-
eters to make the generated invariants neither too general nor too
specific.

Figure 5 presents the invariants templates we used. 𝑎 and 𝑏

are constants that can be specified automatically according to pre-
collected execution traces. These invariants mainly focus on pre-
venting the car from crashing into any obstacle.

We also designed the remedy actions for the autopilot program
to invoke, in order to correct the execution of the robot car when
any invariant is violated. When invariant 1 is violated, the remedy
action will control the robot car to move left or right to keep away
from obstacles. When invariant 2 is violated, the remedy action
will control the robot car to rotate counterclockwise or clockwise
to prevent deviation.

4.3 Deep learning model input pruning
In this module, we implemented and modified the DISSECTOR [9]
approach to validate the input of deep learning models. More specif-
ically, we trained five sub-models of the origin image recognition

Internetware’20, May 12–14, 2021, Singapore, Singapore Jinchi Chen, Yi Qin, Huiyan Wang, and Chang Xu

∀𝛾1 ∈ 𝑆𝑓𝑜𝑟𝑤𝑎𝑟𝑑 (∀𝛾2 ∈ 𝑆𝑓𝑜𝑟𝑤𝑎𝑟𝑑(

 |𝛾1. 𝑡𝑖𝑚𝑒 − 𝛾2 . 𝑡𝑖𝑚𝑒| < 1 → |𝛾1. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝛾2 . 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒| < 𝑚))

Constraint 1: The change of the forward sensor’s reading shouldn’t exceed m meters within 1 second.

∀𝛾1 ∈ 𝑆𝑙𝑒𝑓𝑡 (∀𝛾2 ∈ 𝑆𝑙𝑒𝑓𝑡(

 |𝛾1. 𝑡𝑖𝑚𝑒 − 𝛾2. 𝑡𝑖𝑚𝑒| < 1 → |𝛾1. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝛾2 . 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒| < 𝑛))

Constraint 2: The change of the left sensor’s reading shouldn’t exceed n meters within 1 second.

∀𝛾1 ∈ 𝑆𝑟𝑖𝑔ℎ𝑡 (∀𝛾2 ∈ 𝑆𝑟𝑖𝑔ℎ𝑡(

 |𝛾1. 𝑡𝑖𝑚𝑒 − 𝛾2 . 𝑡𝑖𝑚𝑒| < 1 → |𝛾1. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝛾2 . 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒| < 𝑛))

Constraint 3: The change of the left sensor’s reading shouldn’t exceed n meters within 1 second.

Figure 4: Constraints used in evaluation.

𝑑𝑙𝑒𝑓𝑡 ≥ 𝑎 ∧ 𝑑𝑟𝑖𝑔ℎ𝑡 ≥ 𝑎

Invariant template 1: When the car is about to turning direction, it doesn’t be too close to the

obstacles on the left or right.

|
𝑑𝑙𝑒𝑓𝑡1 − 𝑑𝑙𝑒𝑓𝑡2

∆𝑡𝑖𝑚𝑒
| ≤ 𝑏 ∧ |

𝑑𝑟𝑖𝑔ℎt1 − 𝑑𝑟𝑖𝑔ℎ𝑡2

∆𝑡𝑖𝑚𝑒
| ≤ 𝑏

Invariant template 2: When the car is moving forward, the readings of the range sensors on

the left or right don’t change too rapidly.

Figure 5: Invariants used in evaluation.

model. Each sub-model is associated with specific layer of the origin
model. The system will calculate a PVsocre for each input based on
the origin model and five sub-models.

With the original DISSECTOR approach, there is a fixed thresh-
old to determine whether the input image is valid and drops the
invalid ones. In some situations, such a fixed threshold could lead
the autopilot program to abort all received images during a period
of time. If this happens during the robot car’s passing of an inter-
section, the autopilot program would fail to response to a road sign
and move towards the correct direction. To prevent this situation,
we designed a slide-window-based approach for using the DISSEC-
TOR approach. Instead of setting a fixed threshold on the image’s
PVscore, we perform DISSECTOR on five images on one time and
choose the image with the highest PVscore to be recognized by the
autopilot program.

5 EVALUATION
In this section, we present the experiments based on our RM-Testing
platform. The experiments aim to study the following two research
questions.

RQ1: Whether the selected approaches work effectively in prevent-
ing a context-aware system from failing?

Figure 6: Predefined intersection types.

RQ2: Whether the difference between a simulated environment
and a physical environment affect the effectiveness of these selected
approaches in preventing a context-aware system from failing?

5.1 Evaluation Design
Scenario. The scenario we designed is a static urban road network,
which consists of straight roads and intersections, simulating the
real world. To simplify the scenario, we designed the map according
to the following three principles: 1) all roads have the same width; 2)
all roads are on the same plane; 3) all intersections are one of three
predefined types (as shown in Figure 6), so any two roads are vertical
or parallel. We also defined the starting point and ending point of

Simulated or Physical? An Empirical Study on Input Validation for Context-aware Systems in Different Environments Internetware’20, May 12–14, 2021, Singapore, Singapore

Starting

point

Starting

point

Ending

point

Ending

point

500 cm

7
0

0
 c

m

Correct

route

Figure 7: Design of the map used in evaluation.

the map. The choice of the starting and ending point guarantees
the uniqueness of the correct route of the robot car. As a result, the
robot car must turn the correct direction at each intersection in
order to reach the ending point. We use road signs on the ground
to indicate the correct direction in every interaction. The map we
designed is shown in Figure 7

Task. In the initial state of the scenario, the robot car is placed
at the starting point. Then the autopilot program controls the robot
car toward the ending point. The program should adjust the car’s
actions in real-time based on the environmental data sensed by
range sensors and camera. The task will fail if the car collides the
fences on both sides of the road or turns in the wrong direction at
any intersection during driving.

To successfully complete the task, the autopilot program has to
consider the following two objectives:

• No collision. The autopilot program should avoid the car
crashing into any obstacle. More specifically, the program
should first analyze the car’s relative position on the road,
and keep a distance from all surrounding obstacles while
moving towards the ending point.

• No wrong turning. The autopilot program should make sure
that the car turns correct direction at all intersections. More
specifically, the program uses a deep-learning-based image
recognition module to identify the road signs and the correct
direction at intersections.

The autopilot program’s execution is considered “failed” when
any of the two objectives are violated. If the autopilot program
controls the robot car to reach the ending point with no failure,
then this execution is considered as a success one. The quality of
the program is measure by “success rate”, which is the ratio of the
number of success executions and the number of total executions.

Subject. The subject we used in the experiments was designed
and developed by a well-trained senior undergraduate student. In a
simulated environment free from uncertainty, the subject program
could control the robot car reaching the ending point with a high
success rate.

Input validation. When we put the subject autopilot program
in the physical environment, the success rate for the car to reaching
the ending point is lowered due to the fact that the program suf-
fers from uncertainty. As discussed before, input validation can be
used to help the program better cope with uncertainty. The three
aforementioned input validation approaches are used as follows.

• We used constraints checking to detect and repair the consis-
tency error of sensor data, improving its reliability.

• We used invariant checking to detect and repair the car’s
abnormal state, avoiding collision as much as possible.

• We used DL model input pruning to improve the accuracy of
image recognition.

5.2 Evaluation Setup
We constructed the scenario based on the aforementioned map in
the physical and the simulated environments respectively (as shown
in Figure 8). Configurations like object scale, car behavior, range
sensor installation position and camera angle in these environments
are exactly the same.

The physical Environment. We constructed the physical sce-
nario on flat ground with a size of 500cm*700cm. We use white
paper to cover the ground for two considerations. On the one hand,
paper can make the road as flat as possible to prevent small pot-
holes on the ground from affecting the car; on the other hand, the
original color of the ground is inconsistent, and white paper helps
to reduce impact on deep learning method. Then we used paper
boxes as fences on both sides of the road. Finally, we posted road
signs at all intersections in order to indicate the correct direction.

The simulated Environment. We constructed the simulated
scenario with Unity engine[3]. To simulate uncertainty such as ran-
dom errors and mechanical deviation, we injected several random
values based on the characteristics of the physical environment:
1) we added a normally distributed random value to the reading
of the range sensor to simulate random error; 2) we added 𝑁 to
the reading of range sensor with probability 𝑃 to simulate sudden
change due to transient sensor failure, where 𝑃 is small and 𝑁

is large; 3) we added a normally distributed random value to the
steering angle of the car to simulate mechanical deviation.

5.3 Evaluation Procedure
All the experiments are conducted on a laptop with an AMD Ryzen
7 4800U CPU @1.8GHz and 16GB RAM.

To answer research question RQ1, we compare the success rate
of different configurations (whether methods are enabled or not). In
the simulated environment, we conducted all groups of experiments
as shown in Figure 1 and run 50 times with the same configura-
tion for each group. In the physical environment, considering the
experimental cost, we conducted experiments with configuration
of group 1 and 8 (i.e. all methods are enabled or disabled) 50 times
to simply observe the overall effectiveness of these three methods.
These experiments are named exp-1. To better study the effective-
ness of constraints checking and invariant checking from a more
fine-grained perspective, we placed the car at the starting point
with random displacement deviation and angle deviation, and ob-
served whether it can pass the first intersection, named exp-2. We

Internetware’20, May 12–14, 2021, Singapore, Singapore Jinchi Chen, Yi Qin, Huiyan Wang, and Chang Xu

(a) In simulated environment. (b) In physical environment.

Figure 8: Evaluation in the simulated and the physical environment.

Table 1: Configuration for each group.

Group Configuration (enabled or not)
Constraints
checking

Invariant
checking

DL model
input pruning

1
2 ✓
3 ✓
4 ✓ ✓
5 ✓
6 ✓ ✓
7 ✓ ✓
8 ✓ ✓ ✓

Table 2: Success rate of each group in the simulated environ-
ment.

Group Number of success Success rate
1 0 0%
2 0 0%
3 14 28%
4 7 14%
5 0 0%
6 1 2%
7 36 72%
8 41 82%

ran exp-2 with configuration of all groups shown in Figure 1 and
50 times for each group, too.

To answer research question RQ2, we compare the success rate
of the simulated environment and the physical environment in
exp-1.

In exp-1, we record the success rate, the number of constraints
checking and invariant checking and the prediction result of every
image. In exp-2, we record the success rate.

5.4 Evaluation Results and Analyses
RQ1 (the effectiveness of input validation)

Wewill firstly discuss experiments in the simulated environment.
Table 2 gives an overview of the results of exp-1 on the success

rate by the eight groups under comparison. When all three methods
are disabled, the car never reaches the ending point. We think the
main reason leading to this phenomenon is that the ending point

is far away from the starting point, so the accumulated deviation
causes the car to deviate from correct route. With all three methods
enabled, the success rate increases to 82%, indicating that these
methods can effectively prevent the car from failing.

To observe the effectiveness of each method, we also calculate
success rate from the perspective of each method, as shown in
Table 3. We observe that constraints checking increases the success
rate by 28.5% and invariant checking increases the success rate by
48.5%, which shows these two methods’ effectiveness. However,
input validation decreases the success rate by 2.0%. We think the
main reason is that the accuracy of the original model is already at a
high level (about 94.8%), so failure caused by prediction errors is rare
compared with random errors or mechanical deviations. Therefore,
this metric cannot show the effectiveness of input validation. On
the other hand, decreasing by 2.0% is within reasonable error range.

We further investigate the effectiveness of input validation for
deep learning models by analyzing accuracy. For all images in ex-
perimental group with input validation method enabled, we predict
their labels with the original deep learning model (input validation
method is disabled now), then observe the change of accuracy. As
shown in Table 4, input validation method helps increase the accu-
racy by 1.6%. Since the base was high, we think it has been a big
improvement.

The results of exp-2 is shown in Table 5. We can find that con-
straints checking helps increase the success rate of exp-2 by 9.0%
and invariant checking help increase by 26.0%.

Then we study the effectiveness of input validation in the phys-
ical environment. Unfortunately, even with all three methods en-
abled, the robot car failed to reach the ending point in all of its
50 executions. The major reason for this zero-success-rate is the
system’s low accuracy in recognizing the road signs. On the one
hand, recognizing the images in the physical environment is much
more difficult comparing with it in the simulated environment. We
try our best to achieve an 80% recognition accuracy after tuning
the model for several days. On the other hand, even the system’s
accuracy in sign-recognizing reaches 90%, the probability for it to
control the robot car to reach the ending point is barely over 20%,
which could be father lowered by other uncertain factors.

As a result, we measure the proportions of the robot car to reach-
ing the fifth and the sixth intersections, instead of the successful
rate of it to reaching the ending point. The results are shown in
Table 6. With all three methods enabled, the proportions of reaching
the 5th and 6th intersections increases by 50% and 24%, respectively,

Simulated or Physical? An Empirical Study on Input Validation for Context-aware Systems in Different Environments Internetware’20, May 12–14, 2021, Singapore, Singapore

Table 3: Success rate grouping by method in the simulated environment.

Method Number of
rounds

Number of success Success rate
Disabled Enabled Change Disabled Enabled Change

Constraints checking 200 21 78 57 10.5% 39.0% 28.5%
Invariant checking 200 1 98 97 0.5% 49.0% 48.5%

DL model input pruning 200 53 49 -4 26.5% 24.5% -2.0%

Table 4: Accuracy change in the simulated environment.

Group Number of
samples

Accuracy
Disabled Enabled Change

2 190 91.9% 90.5% -1.4%
4 371 98.4% 99.2% 0.8%
6 302 86.4% 90.7% 4.3%
8 706 97.6% 99.0% 1.4%

Total 1569 94.8% 96.4% 1.6%

Table 5: Success rate change of exp-2 in the simulated envi-
ronment.

Method Number of
rounds

Success rate

Disabled Enabled Change

Constraints
checking 200 74.0% 83.0% 9.0%

Invariant
checking 200 65.5% 91.5% 26.0%

Table 6: Proportions of reaching different intersections in
the physical environment.

Group % of reaching the
5th intersection

% of reaching the
6th intersection

1 (all disabled) 4% 0%
8 (all enabled) 54% 24%

indicating these methods can also effectively prevent the car from
failing in the physical environment.

Therefore, we answer research question RQ1 as follows.
The selected approaches work effectively in preventing a context-
aware system from failing. In general, these methods can increase
the success rate of the car arriving the ending point by 82% in the
simulated environment, and increase the proportion of reaching
the 5th intersection by 50% in the physical environment. From the
perspective of each approach, constraints checking increases the
success rate of the car passing the first intersection by 9.0% and
invariant checking increases it by 26.0%. Input validation increases
the accuracy of image classification by 1.6%.

RQ2 (the compare of input validation’s effectiveness in
the physical environment and the simulated environment)

As mentioned above, the proportion of the car passing all 15
intersections and reaching the ending point reaches 82% in the
simulated environment, while the proportion of it reaching the 6th

intersection is 24% in the physical environment. Although these
methods are effective in both environments, their effectiveness
in the physical environment is not as significant as that in the
simulated environment.

Therefore, we answer research question RQ2 as follows.

The difference between the simulated environment and the phys-
ical environment does affect the effectiveness of these selected
approaches in preventing a context-aware system from failing.
The proportion of the car passing all 15 intersections reaches 82%
in the simulated environment while the proportion of it reach-
ing the 6th intersection is 24% in the physical environment. The
approaches’ effectiveness in the physical environment is not as
significant as that in the simulated environment.

5.5 Threats to validation
The major threat to the validation of the result of our evaluation
is the difference between the configurations of the simulated and
the physical environment. As we discussed above, the reason that
we use a smaller configuration in the physical environment is the
autopilot program’s failing in leading the robot car to the ending
point. Nevertheless, we believe our current experiments could al-
ready indicates the different performance of input validation in the
simulated environment and in the physical environment. What is
more, the different configuration itself also validates the differences
between a context-aware system’s execution in a simulated envi-
ronment and in a physical environment. This echoes our argument
in Section 1 that CASs-based works should be evaluated in the
physical environment.

Another major threat to the validity of our evaluation is the
selection of the subject. We only use the platform for conducting ex-
periments. This may harness the generalization of our conclusions.
Conducting experiments in both the simulated environment and
the physical environment requires full understanding of the testing
platform, which restricts our choice of potential subjects. Neverthe-
less, we believe that RM-Testing is a good evaluation subject since
it represents and integrates various kinds of self-driving-related
context-aware services, including collision avoidance, disengage-
ment detection, and road sign recognition.

6 RELATEDWORKS
Constraint checking. Nentwich et al. [20] propose xlinkit for
repairing inconsistent XML documents. This framework builds on
an incremental checking model. Egyed et al. [12] focus on repairing
inconsistency error in UML models. These pieces of works were
evaluated from using pre-collected or generated context data.

Xu et al. [11] propose two strategies in efficient checking in-
consistent context, namely partial constraint checking strategy

Internetware’20, May 12–14, 2021, Singapore, Singapore Jinchi Chen, Yi Qin, Huiyan Wang, and Chang Xu

(denoted as PCC) and entire constraint checking strategy (denoted
as ECC). Both the PCC and the ECC approach were evaluated in
the simulated environments using real context data.

Invariant checking. Invariant checking enables program to
detect potential abnormal state at runtime. Xu et al. [15] propose
monitoring runtime errors for an application and relating them
to responsible defects in the application. Qin et al. [19] explore
multi-invariant detection based on context-based trace grouping.
These two pieces of works are evaluated in both the simulated and
the physical environments.

Besides, Ramirez et al. [21] propose discovering combinations of
environmental conditions to trigger specification-violating behav-
iors. Aliabadi et al. [18] explore mining dynamic system properties
around time. Wang et al. [26] propose identifying program points
where the system’s behavior may be affected by context changes.
These pieces works are evaluated in the simulated environments
using generated context data.

Deep learning model input pruning. Input validation for
deep learning model could greatly improve the performance of
DL models in terms of their accuracy in predicting. Chu et al. [23]
focus on data cleaning for more qualified training data. Pei et al. [22]
converted the corner-case generation problem to joint optimiza-
tion problem. Tian et al. [27] propose a testing tool for detecting
abnormal state of DNN-driven vehicles that can potentially lead
to crashing. Wang et al. [9] track each input’s interpretation for
estimating its validity. All these pieces of works evaluated their
approaches using static datasets.

As discussed above, most related works simply evaluated the
proposed approaches in a simulated environment, and only few of
them conducted experiments in a real physical environments.

7 CONCLUSION AND FUTUREWORK
In this paper, we built a testing platform, RM-Testing, based on DJI
RoboMaster S1 and tested constraints checking, invariant checking,
and deep model input pruning in both the simulated environment
and the physical environments. Our experimental evaluation val-
idates the three methods’ effectiveness in preventing a context-
aware system from failing in both environments. It also indicates
that evaluating approaches in only a simulated environment is not
convincing considering the difference between the simulated en-
vironment and the physical environment. Thus, we believe that
CASs-based works should be evaluated in the physical environment
in order to demonstrate their effectiveness and usefulness.

Our work still has room for improvement. For example, our
current experiments reveal the differences of the simulated envi-
ronment and the physical environment. Due to the limitation of
effort and space, we failed to figure out the root cause of this dis-
crepancy. We will further recognize the factors that contribute the
discrepancy, such as sensor noise and mechanical deviation, and
perform an abrasion study to investigate the impact of those factors.

ACKNOWLEDGMENTS
This work was supported in part by National Natural Science Foun-
dation (Grants No 61932021, 61902173) of China andNatural Science
Foundation of Jiangsu Province (Grants No BK20190299). The au-
thors would also like to thank the support of the Collaborative

Innovation Center of Novel Software Technology and Industrializa-
tion, Jiangsu, China.

REFERENCES
[1] Lü J, Ma X, Huang Y, et al. Internetware: a shift of software para-

digm[C]//Proceedings of the First Asia-Pacific Symposium on Internetware. 2009:
1-9.

[2] https://www.dji.com/cn/robomaster-s1.
[3] https://unity.com.
[4] https://link.springer.com/chapter/10.1007/978-3-030-00262-6_11.
[5] https://www.bbc.com/news/technology-48308852.
[6] National Transportation Safety Committee of Indonesian, “Preliminary Re-

port on the Lion Air B737 MAX 8 accident,”, https://reports.aviation-
safety.net/2018/20181029-0_B38M_PK-LQP_PRELIMINARY.pdf.

[7] Xi W, Xu C, Yang W, et al. How context inconsistency and its resolution impact
context-aware applications[J]. Journal of Frontiers of Computer Science and
Technology, 2014, 8(4): 427.

[8] Esfahani N, Malek S. Uncertainty in self-adaptive software systems[M]//Software
Engineering for Self-Adaptive Systems II. Springer, Berlin, Heidelberg, 2013:
214-238.

[9] Huiyan Wang, Jingwei Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. DISSECTOR:
Input Validation for Deep Learning Applications by Crossing-layer Dissection.
In Proceedings of the 42nd ACM/IEEE International Conference on Software
Engineering (ICSE 2020), pp. 727-738, Seoul, South Korea, May 2020.

[10] Nentwich C, Emmerich W, Finkelsteiin A, et al. Flexible consistency checking[J].
ACM Transactions on Software Engineering and Methodology (TOSEM), 2003,
12(1): 28-63.

[11] Xu C, Cheung S C, Chan W K, et al. Partial constraint checking for context con-
sistency in pervasive computing[J]. ACM Transactions on Software Engineering
and Methodology (TOSEM), 2010, 19(3): 1-61.

[12] Egyed A. Fixing inconsistencies in UML design models[C]//29th International
Conference on Software Engineering (ICSE’07). IEEE, 2007: 292-301.

[13] Gehrke J, Madden S. Query processing in sensor networks[J]. IEEE Pervasive
computing, 2004, 3(1): 46-55.

[14] Tarr P, Clarke L A. Consistency management for complex applica-
tions[C]//Proceedings of the 20th international conference on Software engineer-
ing. IEEE, 1998: 230-239.

[15] Xu C, Cheung S C, Ma X, et al. Adam: Identifying defects in context-aware
adaptation[J]. Journal of Systems and Software, 2012, 85(12): 2812-2828.

[16] Ernst M D, Perkins J H, Guo P J, et al. The Daikon system for dynamic detection
of likely invariants[J]. Science of computer programming, 2007, 69(1-3): 35-45.

[17] Jiang H. Invariant Inferring and Monitoring in Robotic Systems[J]. 2014.
[18] Aliabadi, M. R., Kamath, A. A., Gascon-Samson, J. and Pattabiraman, K., “ARTI-

NALI: dynamic invariant detection for cyber-physical system security,” in Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
2017, pp. 349-361.

[19] Y. Qin, T. Xie, C. Xu, A. Astoga and J. Lu, “CoMID: context-based multi-invariant
detection for monitoring cyber-physical software,” in IEEE Transactions on Relia-
bility, to be published, 2019.

[20] Nentwich C, Capra L, Emmerich W, et al. xlinkit: A consistency checking and
smart link generation service[J]. ACM Transactions on Internet Technology
(TOIT), 2002, 2(2): 151-185.

[21] Ramirez A J, Jensen A C, Cheng B H C, et al. Automatically exploring how
uncertainty impacts behavior of dynamically adaptive systems[C]//2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2011). IEEE, 2011: 568-571.

[22] Pei K, Cao Y, Yang J, et al. Deepxplore: Automated whitebox testing of deep
learning systems[C]//proceedings of the 26th Symposium on Operating Systems
Principles. 2017: 1-18.

[23] Chu X, Morcos J, Ilyas I F, et al. Katara: A data cleaning system powered by
knowledge bases and crowdsourcing[C]//Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 2015: 1247-1261.

[24] Kulkarni D, Tripathi A. A framework for programming robust context-aware
applications[J]. IEEE Transactions on Software Engineering, 2010, 36(2): 184-197.

[25] Sama M, Elbaum S, Raimondi F, et al. Context-aware adaptive applications: Fault
patterns and their automated identification[J]. IEEE Transactions on Software
Engineering, 2010, 36(5): 644-661.

[26] Wang Z, Elbaum S, Rosenblum D S. Automated generation of context-aware
tests[C]//29th International Conference on Software Engineering (ICSE’07). IEEE,
2007: 406-415.

[27] Tian Y, Pei K, Jana S, et al. Deeptest: Automated testing of deep-neural-network-
driven autonomous cars[C]//Proceedings of the 40th international conference
on software engineering. 2018: 303-314.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Self-driving car and DJI RoboMaster S1
	2.2 Input Validation for Context-aware Systems

	3 A testing platform for context-aware system
	3.1 Sense in RM-Testing
	3.2 Control in RM-Testing
	3.3 Info in RM-Testing

	4 Input validating in RM-Testing
	4.1 Constraints checking
	4.2 Invariant checking
	4.3 Deep learning model input pruning

	5 Evaluation
	5.1 Evaluation Design
	5.2 Evaluation Setup
	5.3 Evaluation Procedure
	5.4 Evaluation Results and Analyses
	5.5 Threats to validation

	6 Related Works
	7 Conclusion and future work
	Acknowledgments
	References

