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ABSTRACT
Self-adaptation is a promising approach to enable software sys-
tems to address the challenge of uncertainty. Different from tradi-
tional reactive adaptation mechanisms that focus on the system’s
current environment state only, proactive adaptation mechanisms
predict the potential environmental changes andmake better adap-
tation plan accordingly. PLA and CobRA are two representative
approaches to build proactive self-adaptationmechanisms. Despite
their different design and implementation details, Proactive Latency-
aware Adaptation (PLA for shot) and Control-based Requirements-
oriented Adaptation (CobRA for short) are reported to have a very
similar performance in supporting self-adaptation. In this paper,
we conduct an in-depth comparison between these two approaches,
trying to explain their effectiveness. We separate a proactive self-
adaptation mechanism into three modules, namely system mod-
elling, environment predicting, and uncertainty filtering. We iden-
tify the design choices of PLA and CobRA approaches, in terms
of these three modules. We performed an ablation study on the
three modules of PLA and compared their performance with Co-
bRA. Our study reveals the very important role of uncertainty
filtering in supporting self-adaptation, as well as the huge im-
pact of a fluctuant environment on a self-adaptation mech-
anism. Based on this observation, we briefly discuss a concep-
tual self-adaptation mechanism, MAPE-U (monitoring, analyzing,
planning, executing with uncertainty).

CCS CONCEPTS
• Software and its engineering → Software system structures.
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1 INTRODUCTION
Modern software systems suffer from uncertainty, such as fluctu-
ant running environment, context-aware requirements, and unex-
pected operating situations, which often reduces the quality of the
service delivered by the system [8]. Self-adaptation has been pro-
posed to eliminate the impact of uncertainty. Typical applications
of self-adaption systems include Wireless sensor networks [14],
Cyber-physical systems [6], and Cloud computing [19].

Self-adaptation enables a software system to continuously de-
liver high-quality services through re-configuring its components
and functionalities [4]. Different from traditional approaches that
adjust a system according to the pre-definedworkflow, self-adaptation
evolves a system based on the system’s running environment. As
such, a self-adaptive system can be conceptually described and im-
plemented as a MAPE-K loop, which consists of four phases of
monitoring, analyzing, planning, executing, and the domain knowledge
that guides the adaptation [12].

Take an adaptive web server system as an example. Figure 1 il-
lustrates a MAPE-K adaptation mechanism for such a system. The
mechanism first monitors the managed system by collecting the
information of the system and its running environment, such as
the number of working servers, the number of arriving requests,
and the number of delivered services. Then, after analyzing the
collected information (e.g., calculating some high-level indicators
such as the average response time of the requests, and the network
latency time), the mechanism plans a conclusion on how to adjust
the managed system to adapt to the sensed situation, for exam-
ple, increasing the number of working servers. Finally, the mecha-
nism executes the adaptation on the managed system to complete
a MAPE-K loop.
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Figure 1: MAPE-K architecture

In the early years, the proposed self-adaptation approaches of-
ten use a reactive strategy [16]. More specifically, these approaches
plan the adaptation action according to the current environmental
information only, and never consider the potential environmental
changes in the future. The disadvantage of such a reactive strat-
egy is that it is not fit for the adaptation actions with latency. In
the above example, both increasing and decreasing the number of
servers requires a reactive time to be activated. As a result, by the
time that the number of servers is actually changed, the performed
adaptation action might no longer fit the new environmental situ-
ation.

To address the limitation of these reactive approaches, researchers
have proposed proactive self-adaptation (e.g., PLA [16] and Co-
bRA [1]), which not only considers the current environment situa-
tion but also dynamically predicts the future environmental changes.
Both PLA and CobRA leverage the idea of model predictive con-
trol [20] that describes the problem of predicting future environ-
mental changes by multi-objective optimal programming. How-
ever, these two approaches use different strategies and techniques
in implementing their mechanism. PLA is an architecture-based
approach, which uses a state-machine-based model to describe the
managed system and its running environment, while CobRA is a
control-based approach, which uses a reactive control-loop to con-
nect the managed system’s input and output values, as well as its
adaptation actions.

An interesting point around these two approaches is that, de-
spite their different design and implementation details, PLA and
CobRA showquite similar performance in supporting self-adaption [18].
This result validates the effectiveness of predicting environmen-
tal changes in self-adaptation, but also leaves a new question: how
could a developer choose from PLA andCobRA in her/his self-adaption
systems? In contrast to their similar performance, the suitable ap-
plications of PLA and CobRA are different. If the developer has
profound knowledge of the managed system and its running envi-
ronment, PLA is a better choice since it depends on precise mod-
elling of the managed system. If the developer is less familiar with
the managed system, but can run the managed system in differ-
ent situations, CobRA is a better choice since its relatively-simple
linear model enables one to identify the system model based on
observable execution traces.

In this paper, we conduct an empirical study on PLA and Co-
bRA’s effectiveness in supporting self-adaptation and try to give

an in-depth explanation of these two approaches’ performance. To
achieve these, we further compare the workflow of these two ap-
proaches and separate each of them into three modules, namely
system modelling, environment predicting, and uncertainty filtering.
In system modelling, PLA uses a limited processor sharing (LPS)
model to describe the managed system, while CobRA uses a linear
numeric model. In environment predicting, both PLA and CobRA
use model predictive control to consider the future changes; and in
uncertainty filtering, PLA uses Kalman filter to posterior adjust its
system model, while CobRA uses Kalman filter to posterior com-
pensate its estimation of the system states.

Based on the comparison result, we use ablation study to investi-
gate the effectiveness of these three modules of PLA and compares
themwith CobRA in different environmental situations.The inves-
tigation’s result shows that:

• Imprecise systemmodelling can be compensated by uncertainty
filtering to some extents.

• Environment predicting is less effective than precise system
modelling and well uncertainty filtering.

• Uncertainty filtering has a larger impact on the self-adaptation’s
performance than the other two modules in handling frequent
environmental changes.

In summary, our empirical study reveals the very important
role of uncertainty filtering in supporting self-adaptation, as
well as the huge impact of a fluctuant environment on a self-
adaptation mechanism. Based on this observation, we simply
discuss a conceptual improvement of PLA, anMAPE-Umechanism
(monitoring, analyzing, planning, executingwith uncertainty).The
main idea of MAPE-U is that we could separate uncertainty filter-
ing from the other parts of self-adaptation.

The main contributions of this paper are as follows.
(1) We conduct an empirical study on the three sub-module’s

contributions towards PLA and CobRA’s effectiveness in
supporting self-adaptation.

(2) We empirically find that uncertainty filtering is consider-
ably more important than system modelling and environ-
ment erecting in supporting self-adaptation.

In the remainder of the paper, Section 2 introduces our prelim-
inaries, including a web service-based motivating scenario of self-
adaptation, and two proactive self-adaption approaches of PLA and
CobRA. Section 3 performs an in-depth comparison of sub-modules
of system modelling, environment predicting, and uncertainty fil-
tering of PLA and CobRA. Section 4 conducts an ablation study
on the three modules of PLA, and compare them with CobRA. Sec-
tion 5 describes a conceptual self-adaptation mechanism based on
our empirical findings. Section 6 introduces the related work and
Section 7 concludes the paper.

2 PRELIMINARIES
2.1 RUBiS: a motivating scenario for

self-adaptation
We use the RUBiS system as the subject system to be managed by
self-adaptation. RUBiS [5] is an open-source web service prototype
system. It has been widely used as an evaluation subject by the
community of self-adaptive systems [11, 20]. The architecture of



Overwhelming Uncertainty in Self-adaptation: An Empirical Study on PLA and CobRA Conference’17, July 2017, Washington, DC, USA

client

client

client
database

client

server

server

server

Load 
Balancer

Figure 2: RUBiS architecture

RUBiS mainly consists of three parts, a load balancer, a web server
tier, and a database tier, as shown in Figure 2.The load balancer dis-
tributes the client requests among the working servers following
a round-robin policy. The web server tier includes the clients that
accept request from the users and servers that render web pages
with the content retrieved from a database. The database tier man-
ages the servers’ request to the database and provides the servers
with both mandatory data and optimal data.

Considering the limited network and computation resources,
RUBiS enables its servers to deliver services of different level of
qualities.Theweb page consisting ofmandatory content (produced
from the mandatory data) meets a user’s basic requirements, while
the web page consisting of both mandatory content and optimal
content (produced from the optimal data) meets a user’s higher-
level requirements. As such, service delivered by the servers can be
configured by a parameter called “dimmer” [13], which determines
the ratio of mandatory content and optimal content rendered by a
server. Basically, a lower dimmer value means a low-level qual-
ity of the service delivered by the server, which could increase the
throughput of the system; a higher dimmer value means the server
is now delivering more optimal content, which could decrease the
system’s throughput.

2.2 RUBiS as an Adaptation System
TheRUBiS system is a natural target of self-adaptation.The system
has to balance its throughput and quality of service. Such balanc-
ing is further affected by the uncertainty such as the network con-
dition and user workload. To precisely measure the gain and lose
from the self-adaptation, we could use the following utility func-
tion to quantify the quality of the self-adaptation [18]. We use r
to denote the response time, d to denote the dimmer value and s
to denote the number of working servers. We depict the system’s
workload by the average request rate α within a time interval τ .
The utility function uses two parameters RM and RO to represent
the system gaining for serving a request with mandatory content
and optimal content, respectively.

Uτ =


UR +UC r ≤ T ∧UR = U

∗
R

UR r ≤ T ∧UR < U ∗
R

τ ·min(0,α − κ)RO r > T
(1)

HereUR represents the utility associated with revenue per time
interval:

UR = τ · α · (d · RO + (1 − d) · RM ) (2)
andU ∗

R represents the utility when dimmer value is set to 1:

U ∗
R = τ · α · ·RO (3)

andUC represents the utility associated with cost per time interval:

UC = τ · c · (s∗ − s) (4)
Equation (1) describes three entangled requirements. First, the

response time r of all the request should never exceed a threshold
T . Second, the content quality delivered by a server should be as
high as possible, namely the dimmer value d should be maximized.
Third, the cost of the system should be as low as possible, namely
the number of servers s should be minimized.

RUBiS provides two pairs of adaptation actions to configure the
system’s provided service. One is Add/remove a server, which
can be used to change the number of working servers. And another
one is Increase/decrease dimmer value, which can be used to
change the value of dimmer and further indicates the quality of
service delivered to the concerned request.

The uncertainty faced by RUBiS can be generally classified into
two types, internal uncertainty and external uncertainty. The for-
mer concerns the system’s running environment, e.g., the upcom-
ing workload and network condition, and the latter concerns the
system’s control mechanism (e.g., the time latency of booting a
server, and the time latency of removing a server’s workload and
shutdown the server).

2.3 Two Proactive Self-adaptation Methods:
PLA and CobRA

Uncertainty Filter
(Kalman Filter)

ENV Predictor
(AutoRegressive)

Model Checker
System Model

(LPS Queuing Model)

MDP

Environment
(Workload)

System 
Configuration

Adaptation Action

Figure 3: Structure of PLA
PLA is proposed byGabriel et al. [16] in 2015. It is an architecture-

based approach that needs to precisely model the managed sys-
tem and its running environment. More specifically, PLA relies on
a LPS queuing model to describe the managed system’s working
status and the corresponding environmental dynamics and adap-
tation actions. By using an auto-regressive model, PLA would dy-
namically predict the distribution of the systemmole’s future state.
PLA describes the uncertainty based on the Markov decision pro-
cess (MDP), and tries to eliminate the negative impact of uncer-
tainty by using the Kalman filter. The adaptation action of PLA is
determined by using a non-deterministic model-checker to maxi-
mize the adaptation goal. Figure 3 illustrates PLA’s basic structure.

2.3.1 CobRA. CobRA is proposed by Konstantinos et al. [1] in
2016. It is a control-based approach that use control theory to de-
scribe the numeric relationship between the managed system’s in-
put, output and control actions. More specifically, CobRA uses a
linear model to capture the dynamic features of the managed sys-
tem. CobRA does not predict the future environmental changes
explicitly, but regards the potential environmental changes as a
kind of fluctuation and leave it to uncertainty filtering. CobRA uses
Kalman filter to posteriorly adjust its predicted system states, and
compensates it with the possible fluctuation that can be viewed
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Table 1: Differences between PLA and CobRA

Features PLA CobRA
System Modelling A LPS queuing model based on accurate modelling A linear dynamic model based on system identification

Environment predicting Explicit prediction based on auto-regression model Implicit prediction based on posterior model adjustment
Uncertainty Filtering Using MDP to dynamically adjust the model parameters Using Kalman filter to dynamically compensate the model states

as a prediction of the future environmental states. The adaptation
logic determined by CobRA is determined by the control theory.
Figure 4 illustrates CobRA’s basic structure.

Uncertainty Filter
(Kalman Filter)

Control Theory
System Model
(Linear Model)System 

Configuration
Adaptation Action

Environment
(Workload)

Figure 4: Structure of CobRA

3 COMPARISON BETWEEN PLA AND COBRA
In this section, we summarize the differences between PLA and
CobRA, in terms of systemmodelling, environment predicting and
uncertainty filtering, which are presented in Table 1. The detailed
comparison is as follows.

3.1 System modeling
One of the most significant differences between the PLA and Co-
bRA is system modeling which quantizes the relationship of the
managed system’s input, output, and the adaptation actions. PLA
regards the managed system as a white-box and pays lots of efforts
on precise modeling of the system’s behaviour in the running envi-
ronment. CobRA assumes that the managed system is in the vicin-
ity of an equilibrium point despite uncertainties [22]. Therefore, it
regards the managed system as a black-box and identifies system
model as a linear model using sampling data in the vicinity of its
equilibrium point.

For systems like RUBiS that are exponential and sensitive to the
fluctuation of workload, CobRA’s linear model may result in a less-
effective self-adaptation due to its highly-dynamic running envi-
ronment. However, the precise system model of RUBiS is a steady-
state approximation of LPS queue in heavy traffic [24], and there
are significant deviations between predicted indicators and their
transient measurements which are relied on uncertainty filtering
mechanism to offset. Therefore, the impact of different choices in
systemmodelling should be investigated (the results are presented
in Figure 6).

3.2 Environment predicting
PLA and CobRA handle the changes of environment differently.
PLA assumes the change of environment is predictable and uses
current and historical measurements to construct the probabilistic
tree of the future environment. Then, the predicted environment
will be used to calculate the accumulated utility for all possible
adaptation strategies and the adaptation strategy corresponding
to maximum accumulated utility in our adaptation decision. How-
ever, CobRA regards the assumed slowly changing environment
as disturbances which are handled by closed-loop feedback con-
trol. Thus, it does not predict the future environment but uses its
measurements as a feed-forward signal to improve the prediction

of current indicators which is used in Kalman Filter to obtain the
true states of the current system.

For the RUBiS self-adaptive system, the environment is describes
as system’s workload. PLA uses time series predictor (e.g., the RPS
toolkit [7]) to predict future workloads. However, there are always
errors in the predicting process, especially when there is no peri-
odic change in the environment. We also study the impact of dif-
ferent prediction methods in our later empirical study (the results
are presented in Figure 8).

3.3 Uncertainty filtering
Both of PLA and CobRA have uncertainty filtering modules to tol-
erate the impact of uncertainties, such as environment fluctuating
and modeling error. PLA uses Kalman Filter to dynamically adjust
the parameters of the system model. More specifically, since PLA’s
systemmodelmight be built according to themanaged system’s be-
haviour in a developing environment, the parameters of the model
need to be shifted into the managed system’s behaviour in the run-
ning environment. As such, PLA uses Kalman filter to dynamically
adjust its model’s parameters based on the observation and poste-
rior validation of the managed system’s current execution. CobRA
also uses Kalman filter to handle uncertainty. However, it directly
adopts the ideas from control theory and describes the behaviour
of the system with the state space equation.

In supporting self-adaptation for RUBiS, PLA adjusts the param-
eter of service time in the system model by Kalman Filter, so as to
realize the feedback, while CobRA directly regulates the state of
the system. We finally study the impact of the different usage of
Kalman filter of the two mechanisms (the results are presented in
Figure 10).

4 AN ABLATION STUDY ON THE
EFFECTIVENESS OF PLA AND COBRA

In this section, we conduct an ablation study on the effectiveness
of PLA’s three modules, namely system modelling, environment
predicting, and uncertainty filtering. Our ablation study is trying
to answer the following research question:

RQ1: How do the three modules of PLA contribute to its effective-
ness in supporting self-adaptation?

We also compare the performance of PLA-based mechanisms
with a complete CobRA mechanism, trying to better understand
the contribution of PLA and CobRA’s different design and imple-
mentation choices. More specifically, the major difference between
PLA and CobRA is their system modelling and environmental pre-
dicting. We want to answer the following research question.

RQ2: How do the different design choices in system modelling and
environmental predicting contribute to the different performance of
PLA and CobRA?
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4.1 Experiment Preparation
Subject. We conducted all the experiments based on the afore-
mentioned RUBiS system. We used SWIM (A Simulator of Web
Infrastructure and Management), a discrete event simulator, as the
running environment of RUBiS.We injected two different real-world
network workloads as the input of RUBiS, one is called “World-
Cup [2]”, and the other one is called “ClarkNet [3]”. We set the
values for the server to be in the range of [1, 2, 3] and dimmer to
be in [0 1], and the responseTime threshold to be 0.75.

Metrics. For each pass of the experiments, we measured the
utility value as the performance of the self-adaptation mechanism
achieved. Notice the value of utility is calculated based on a com-
plete trace according to Equation (1). To capture the temporal fea-
tures of the compared self-adaptationmechanisms, we also reported
the values of responseTime , server , and dimmer , respectively.

Settings of PLA andCobRA. Based on our comparison of PLA
and CobRA, we derived five different settings of PLA and CobRA,
as follows.

PLAS1 denotes the complete PLA mechanism, namely with its
LPS queuing theory model (system modelling), model predictive
controlling (environment predicting), andKalman-filter-based feed-
back (uncertainty filtering).

PLAS2 denotes the PLA mechanism without system modelling.
More specifically, we replace the LPS queuing theory model of the
original PLA with a less accurate crude linear model. Considering
that the LPS queuing theory model is an exponential model, the
building and maintaining of it could bring large time and space
overhead to the self-adaptation mechanism.

PLAS3 denotes the PLAmechanismwithout environmental pre-
dicting. More specifically, we simply disable the prediction func-
tion of PLA and make its adaptation focus on the current system
state.

PLAS4 denotes the PLA mechanism without uncertainty filter-
ing. More specifically, we remove the implicit feedback module in
PLA andmake PLA it an open-loop method that never uses observ-
able information to posterior adjust its internal states.

CobRAS1 denotes the complete CobRAmechanism, namelywith
its linear state-space model (system modelling), model predictive
controlling (environment predicting), andKalman-filter-based feed-
back (uncertainty filtering). We consider only one setting for Co-
bRa since its sub-modules are entangled and cannot be separated
as PLA’s sub-modules.

Procedures. To answer RQ1, we compared the performance of
PLAS1 and PLAS2, PLAS1 and PLAS3, as well as PLAS1 and PLAS4,
respectively.

To answer RQ2, we compared the performance of PLAS1 and
CobRAS1, PLAS2 and CobRAS1, PLAS3 and CobRAS1, as well as
PLAS4 and CobRAS1, respectively.

4.2 Experiment Results
RQ1 (Comparison of PLA’s three modules). We first compare
the achieved utility values of PLAS1 and PLAS2 in Figure 5, con-
cerning the two different workloads. The result shows that the
complete PLAmechanism constantly performs better than the PLA
mechanism without accurate system modelling. This is reasonable
since the accurate LPS model of PLAS1 costs much more time and
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Figure 5: The utility comparison of PLAS1 and PLAS2

space efforts, comparing with the linear model of PLAS2. For the
two different workloads, PLAS1 achieves 30% higher utility value
compared with PLAS2 on ClarkNet, and 5% higher utility value
on WorldCup. The reason for this difference among the two work-
loads is probably because that ClarkNet suffers more short-term
fluctuation compared with WorldCup. Such fluctuant makes the
accurate system modelling more effective in coupling with the en-
vironment of ClarkNet.
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Figure 6: The detailed comparison of PLAS1 and PLAS2

Figure 6 compares the detailed temporal features of the two
mechanisms, i.e., the request per second, the average response time,
the value of dimmer, and the number of servers. The results vali-
date our previous finding that PLAS1 outperforms PLAS2. Con-
sider the response time, which reflects the direct adaptation effect,
PLAS1’s controlled response time never exceeds the pre-defined
threshold (i.e., 0.75 seconds) on WorldCup, and only 2% of its to-
tal running time reports a threshold-overshoot response time on
ClarkNet.This number is still constantly better than that of PLAS2,
whose controlled response time exceeds the threshold for 3% and
10% of its total running time on WorldCup and ClarkNet, respec-
tively.
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Figure 7: The utility comparison of PLAS1 and PLAS3
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Figure 8: The detailed comparison of PLAS1 and PLAS3

We then compare the achieved utility values of PLAS1 and PLAS3
in the Figure 7. Surprisingly, the reported utility values do not
show a significant difference.The gap between PLAS1 and PLAS3’s
achieved utility values onWorldCup is 3%, and the gap onClarkNet
is mere 0.6%. The detailed temporal features of self-adaptation
mechanisms of PLAS1 and PLAS3, as shown in Figure 8, also sug-
gest a less effective role of environment predicting in PLA. Since
we set a quite loose threshold for the response time, PLAS3 even
achieves a better performance than PLAS1 that it never reports
an overshoot on WorldCup, and only 1% of its total running time
suffers overshoot on ClarkNet.

Figures 7 and 8 suggest that whether to predict the future envi-
ronment has no significant influence on the effectiveness of self-
adaptation. This is a very interesting finding since both PLA and
CobRA claim that their model predictive control, which leverages
the prediction of future environmental changes, is the key to their
improved performance comparing with those traditional reactive
self-adaptation mechanisms. Our conjecture to this finding is that
the future environmental changes are encoded in the current sys-
tem state of both PLA and CobRA’s system model. As such, envi-
ronment predicting is less effective, and can be removed for the
reducing of time and space overheads.
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Figure 9: The utility comparison of PLAS1 and PLAS4
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Figure 10: The detailed comparison of PLAS1 and PLAS4

Finally, we compare the achieved utility values of PLAS1 and
PLAS4 in the Figure 9. The result shows that when uncertainty fil-
tering is disabled, PLA’s achieved utility value suffers a significant
drop. On workload WorldCup, the value of utility is reduced by
3%, and onworkload ClarkNet, the value is reduced by 60%.When
considering the detailed performance features, as shown in the Fig-
ure 10, the result is quite similar. PLAS4’s controlled response time
exceeds the threshold for 3% and 37% of its total running time on
WorldCup and ClarkNet, respectively. Noticing that the number
of PLAS1 is 0% and 2%, we again find the self-adaptation mecha-
nisms could suffer from short-term fluctuation if the error between
its estimated system state and the actual state is not well-addressed.

The reason for the significant effectiveness of uncertainty filter-
ing is that it could affect the accuracy of both systemmodelling and
environment predicting. On the one hand, there is a certain gap
between the system model and the actual system, and the uncer-
tainty filtering module can narrow this gap by adjusting the model
parameters. On the other hand, environment predicting could has
some errors, especially when there is no law to be followed for
environmental change. The uncertainty filtering module can make
the adaptation controller tolerate the effects of this error to some
extent.
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Figure 11: The utility comparison of CobRAS1 with PLAS1, PLAS2, PLAS3 and PLAS4

In summary, we conclude our answer to the research question
RQ1 as follows. Environment predicting does not show significant
contribution to PLA’s effectiveness in supporting self-adaption. The
contribution of the remaining twomodules, systemmodelling and un-
certainty filtering increase with the growth of the fluctuation that the
managed system’s running environment suffers. PLA has a greater
performance drop when its uncertainty filtering module is disabled,
comparing with the drop when the system modelling module is dis-
abled.
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Figure 12: The detailed comparison of PLAS1 and CobRAS1

RQ2 (Comparison of between PLA and CobRA). We now
study the contribution of PLA’s and CobRA’s different design and
implementation choices.The achieved utility values of PLAS1, PLAS2,
PLAS3and PLAS4 comparing with CobRAS1 are shown in the Fig-
ure 11, concerning the two workloads.

We first compared the performance of a complete PLA mecha-
nism with a complete CobRA mechanism. The result shows that
the complete PLA mechanism constantly performs better the com-
plete CobRA mechanism. For the two different workloads, PLAS1
achieves 30% higher utility value comparedwithCobRAS1 onWorld-
Cup, and 28% higher utility value on ClarkNet. With respect to
the different settings, PLA and CobRA’s performance varies on
different workloads. For workload WorldCup, all three PLA-based

settings perform better than CobRAS1. Specifically, when compar-
ing with CobRAS1, PLAS2 achieves a 27% higher utility value,
while both PLAS3 and PLAS4 achieves a 28% higher utility value.
For workload ClarkNet,CobRAS1 performs better than PLAS2 (2%
higher utility value) and PLAS4 (53% higher utility value), and per-
forms worse than PLAS3 (27% lowere utility value).

To investigate the different performance of the PLA-based ap-
proaches and CobRA, we study the detailed temporal features of
the compared settings. Figure 12 compares the detailed temporal
features of PLAS1 and CobRAS1. For workload WorldCup, 6% of
CobRAS1’s running time reports an overshot response time (i.e.,
response time over the predefined thresholds of 0.75 seconds), and
PLAS1 never reports such overshoot. For workload ClarkNet, both
PLAS1 and CobRAS1 have 2% of their total running time report
an overshot response time. This is due to the different paradigm
of these two mechanisms: PLA is an architecture-based approach,
which requires the developers have a well-understanding of the
managed system; CobRA is a control-based approach, which re-
quires less-accurate understanding and introduces system identifi-
cation to compensate the inaccuracy.
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Figure 13: The detailed comparison of PLAS2 and CobRAS1

Figure 13 compares the detailed temporal features of PLAS2 and
CobRAS1. For the workload WorldCup, only 3% of PLAS2’s total
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running time suffers an overshoot response time, while that num-
ber of CobRAS1 is 6%. For workload ClarkNet, CobRAS1 achieves
8% less time of the controlled overshot time (2% compared with
PLAS2’s 10%). This different performance is reasonable since in
PLAS2 we replace its accurate LPS-based system model with an
inaccurate linear model. For a stable workload like WorldCup, the
limitation of such inaccurate system model could be covered up,
while for a fluctuant workload like ClarkNet, the same limitation
could be amplified and results in a great performance drop.

Figure 14 compares the detailed temporal features of PLAS3 and
CobRAS1. PLAS3 also avoids reporting any overshoot response
time on workloadWorldCup, and only 1% of its total running time
suffers overshoot on workload ClarkNet. The corresponding num-
bers ofCobRAS1 is 6% for workload WorldCup, and 2% for work-
load ClarkNet. Notice that this pair of settings is the only one that
a partial PLA mechanism outperforms the complete CobRA mech-
anism in both two workloads. This validates our previous findings
in RQ1 that environment predicting is not as important as the other
two modules, in terms of supporting self-adaptation.
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Figure 14: The detailed comparison of PLAS3 and CobRAS1

Last but not least, Figure 15 compares the detailed temporal fea-
tures of PLAS4 and CobRAS1. For the third time, we observe the
switch of leading positions on different workloads. However, the
difference of the leading advantages here is much larger than that
of the other experiments in RQ2. On workload WorldCup, PLAS4
achieves 3% shorter time that suffers overshoot response time (3%
compared to CobRAS1’s 6%). On workload ClarkNet, CobRAS1
achieves 35% shorter time that suffers overshoot response time
(2% compared to PLAS4’s 27%). This dramatic switch of the lead-
ing advantage echoes our finding in RQ1 that uncertainty filtering
has a very significant role in the effectiveness of self-adaptation. To
some extends, we believe that it is the contribution of the active un-
certainty filteringmodule in PLAS3 compensate its performance in
the previous comparison between PLAS4 and CobRAS1.
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Figure 15: The detailed comparison of PLAS4 and CobRAS1

In summary, we conclude our answers to the research question
RQ2 as follows. PLA’s accurate LPS-based system model is more ef-
fective in supporting self-adaptation, compared with CobRA’s linear
model. When running in a highly dynamic environment, uncertainty
filtering is very important for self-adaptation, which can compensate
for the performance of the other two modules to some extends.

4.3 Take-away Points from the Study
Based on the answers to both RQ1 and RQ2, we summarize three
take-away points as follows.

• Unprecise systemmodelling can be compensated by uncertainty
filtering to some extents.

• Environment predicting is less effective than precise system
modelling and well uncertainty filtering.

• Uncertainty filtering has a larger impact on the self-adaptation’s
performance than the other two modules in handling frequent
environmental changes.

4.4 Threats to Validation
One major concern on the validity of our empirical conclusions
is the selection of evaluation subjects in our evaluation. We only
use one subject as the managed system. This might harness the
generalization of our conclusions. Nevertheless, a comprehensive
evaluation requires a full understanding of suitable managed sys-
tems for experimentation. This requirement restricts our choice of
possible experimental subjects. We select RUBiS as the managed
system since we have spent nearly two years on this system. How-
ever, we believe that RUBiS is a quite representative target for self-
adaptation, and it has been used in many other pieces of work in
the community of self-adaptive systems [17] [16].

Another concern is about the managed system’s running envi-
ronment of . We conducted the experiments by using a network
event simulator, SWIM, instead of deploying RUBiS in the real net-
work environment. The simulated environment might not allow
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our conclusions to be generalized to the real environment. Never-
theless, a comprehensive evaluation requires the support of suit-
able environments for experimentation, which should be both ob-
servable and controllable. This requirement restricts our choice of
possible evaluation subjects. We try to make our experiments real-
istic by using real-world workloads in the simulator. Consider that
we can only afford to run the experiments on two workloads, due
to the limitation of time and efforts. We try to make the selected
workloads representative enough, in which WorldCup is a gentle
workload, and ClarkNet is a fluctuant one.

5 A CONCEPTUAL IMPROVEMENT OF PLA
BY SEPARATING UNCERTAINTY

Our empirical study reveals the very important role of uncer-
tainty filtering in supporting self-adaptation. In this section,
we briefly discuss a conceptual improvement of PLA mechanism
by promoting its uncertainty filtering to be a first-class element.
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Figure 16: The MAPE-U mechanism

Figure 16 presents the structure of the proposed MAPE-U mech-
anism. In the traditional MAPE-K mechanism, adaptation decision
is made based on the knowledge of the current system state. This
mechanism is improved by proactive self-adaptation, such as PLA
andCobRA, by combining the aforementioned knowledgewith the
prediction of the system’s future states. Our MAPE-U mechanism
further improves PLA and CobRA by using a separated uncertainty
filtering module to posterior adjust the knowledge about the pre-
diction.

MAPE-U defines a compensating coefficient model to describe
the connection between uncertainty and the knowledge of the sys-
tem and its surrounding environment. We identify a compensation
factor according to themeasured values of the system’s output, and
the model-based hesitated values of the output. The compensation
factors are later fed into a Kalman filter procedure to dynamically
adjust the estimated values of the system’s states.

Take our aforementioned motivation system of RUBiS as an ex-
ample. Let us denote the compensation coefficient is K . The value
of K is determined by the uncertainty of system modelling and
environmental prediction. Here we consider such uncertainty as
to the error of the estimated response time and the predicted re-
sponse time. We represent the predicted value of response time as
y, and the measured responds time LPS(x), in which we denote

the system state as x . The relationship between K and the system
model can be described in the following equation.

y = LPS(x) · K, (5)

According to this relationship, we use the following equation
to describe the state-space model of the concerned self-adaptation
mechanism:

xk = A · xk−1 + B · uk−1 +wk−1yk = C · xk +vk (6)

where xi describes the system state at the time of i ,ui describes the
system’s adaptation action (i.e., the executed value of “dimmer”) at
the time of i , and yi describes the system’s output value (i.e., the
response time) at the time of i . A, B, and C describes the control-
based model of the MAPE-K adaptation, in which A describes the
latency property of the adaptation, B describes the control prop-
erty of the adaptation, and C describes the correlation between
the system’s internal states and its output. We use wi to describe
the noise of the adaptation, which is subject to a gaussian distribu-
tion of N (0,Q). We use vi to describe the noise of the observation,
which is also subject to a gaussian distribution of N (0,R). We as-
sume that the covariance of noisewi and vi can be identified base
through monitoring the system’s execution traces.

Based on this formal description, MAPE-U uses Kalman filter
to dynamically estimate the compensation coefficient at runtime
and adjust its knowledge of the system and surrounding environ-
ment. Basically, a MAPE-U mechanism considers two types of un-
certainty, internal uncertainty that affects the internal states of the
system, and external uncertainty that affects the external observa-
tion of the system’s output. According to our state-space model,
MAPE-U needs to identify the covariance of internal uncertainty
(i.e.,w) and external uncertainty (i.e., v) in advance.

Notice that currently, theMAPE-Umechanism is a purely-conceptual
model based on our empirical findings. We plan to implement it on
RUBiS, and investigate its effectiveness in the future.

6 RELATEDWORK
Software adaptation has been attracted to lots of research efforts
from the community of software engineering. Proactive self-adaptation
further improves the traditional reactive self-adaptation, and has
become one of the research hotspots in recent years. Basically, the
existing self-adaptationmechanism can be classified into architecture-
based ones and control-based ones.The former depends on an accu-
rate discrete model of the managed system, while the latter simple
use a numeric model of the managed system’s input and output
values.

PLA, which is proposed by Gabriel et al. [16], is a representative
architecture-based mechanism. As discussed previously, PLA uses
a formal model of the managed system. The adaptation action in
PLA is decided based on a non-deterministic model checker which
tries to maximize the adaptation utility. Gabriel et al. [17] further
improved PLA by using Alloy models to building a more accurate
model of the managed system. Beside these PLA-based approaches,
Hielscher et al. [10] proposed an active adaptive framework that
uses online testing to detect problems before they occur in actual
transactions, and triggers adaptation when the current execution
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fails in a test. Wang et al. [23] used QoS degradation online predic-
tion to trigger preventive adaptation before SLA violations.

Control-basedmechanism emerges due to their simpler assump-
tions on the managed system and its running environment. Gar-
lan et al. [9] proposed Rainbow adaptive conceptual framework,
which is a Software adaptation framework based on feedback struc-
ture. Rainbow focuses on the modelling of the dynamic relation-
ship between requirements and possible adaptations. Konstantinos
et al. [1] proposed a control theory based self-adaptation frame-
work, which is referred to as CobRA. CobRA proposed using con-
trol theory to design a controller that optimizes the cost-function-
specified adaptation goal.Maggio et al. [15] proposed an automated
approach to merge multiple adaptation goals within a single con-
troller.

There are also existing empirical studies on the different perfor-
mance of different self-adaptation mechanism. Shevtsov et al. [21]
compared a control-basedmechanism, SimCA,with an architecture-
basedmechanism, ActivFORMS.They reported that the architecture-
based mechanism is better for systems that require low settling
time while the control-based method achieves better results in the
presence of runtime fluctuation. Gabriel et al. [18] compared PLA
and CobRA from the aspects of development cost and run-time
performance. They reported that both can achieve the same good
adaptation control effect. Different from these pieces of work, we
perform an in-depth comparison between PLA and CobRA’s differ-
ent design and implementation choices in their three sub-modules
and find the difference in their performance in different environ-
mental workloads.

7 CONCLUSION AND FUTUREWORK
In this paper, we conduct an in-depth comparison between two
proactive self-adaptation approaches, PLA and CobRa, in terms of
their system modelling, environment predicting, and uncertainty
filtering. We performed an ablation study on the three modules
of PLA and compared their performance with CobRA. Our em-
pirical study reveals the very important role of uncertainty
filtering in supporting self-adaptation, as well as the huge im-
pact of a fluctuant environment on a self-adaptation mech-
anism. Based on this observation, we simply discuss a conceptual
self-adaptation mechanism, MAPE-U, which separates the logic of
uncertainty filtering with the logic of adaptation-decision making.
We plan to implement MAPE-U mechanism, and experimentally
validate its effectiveness as our future work.
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