Timely and Accurate Detection of Model Deviation in
Self-Adaptive Software-Intensive Systems

Yanxiang Tong
State Key Lab for Novel Software
Technology, Nanjing University
Nanjing, China
tongyanxiang@gmail.com

Chang Xu
State Key Lab for Novel Software
Technology, Nanjing University
Nanjing, China
changxu@nju.edu.cn

ABSTRACT

Control-based approaches to self-adaptive software-intensive sys-
tems (SASs) are hailed for their optimal performance and theoretical
guarantees on the reliability of adaptation behavior. However, in
practice the guarantees are often threatened by model deviations
occurred at runtime. In this paper, we propose a Model-guided
Deviation Detector (MoD2) for timely and accurate detection of
model deviations. To ensure reliability, a SAS can switch a control-
based optimal controller for a mandatory controller once an un-
safe model deviation is detected. MoD2 achieves both high timeli-
ness and high accuracy through a deliberate fusion of parameter
deviation estimation, uncertainty compensation, and safe region
quantification. Empirical evaluation with three exemplar systems
validated the efficacy of MoD2 (93.3% shorter detection delay, 39.4%
lower FN rate, and 25.2% lower FP rate), as well as the benefits of
the adaptation-switching mechanism (abnormal rate dropped by
29.2%).

CCS CONCEPTS

- Software and its engineering — Software verification and
validation; « Social and professional topics — Software selec-
tion and adaptation.

KEYWORDS
Self-Adaptive Software, Control Theory, Model Deviation

ACM Reference Format:

Yanxiang Tong, Yi Qin, Yanyan Jiang, Chang Xu, Chun Cao, and Xiaoxing Ma.
2021. Timely and Accurate Detection of Model Deviation in Self-Adaptive
Software-Intensive Systems. In Proceedings of the 29th ACM Joint European

*Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8562-6/21/08.

https://doi.org/10.1145/3468264.3468548

Yi Qin’

State Key Lab for Novel Software
Technology, Nanjing University
Nanjing, China
yigincs@nju.edu.cn

Chun Cao®
State Key Lab for Novel Software
Technology, Nanjing University
Nanjing, China
caochun@nju.edu.cn

Yanyan Jiang
State Key Lab for Novel Software
Technology, Nanjing University
Nanjing, China
jyy@nju.edu.cn

Xiaoxing Ma
State Key Lab for Novel Software
Technology, Nanjing University
Nanjing, China
xxm@nju.edu.cn

Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE °21), August 23-28, 2021, Athens, Greece. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3468264.3468548

1 INTRODUCTION

Control theory has been increasingly adopted in developing self-
adaptive software-intensive systems [56, 59]. In designing a control-
based self-adaptive system (control-SAS for short), developers first
identify a nominal model (e.g., a linear time-invariant model) of the
subject system (a.k.a. the managed system, or the plant in control
jargon), and then design a managing system (a.k.a. the controller in
control jargon) based on the identified model with some (feedback)
control mechanisms such as Proportional-Integral-Derivative con-
trol or Model Predictive Control. The advantage of this approach
is that the control mechanisms have well-established mathemat-
ical foundations that theoretically guarantee the optimality and
reliability of the resulting SAS [25, 47, 65].

However, software-intensive systems behave differently from
physical devices to which control theory is usually applied. The
behavioral patterns of the former are more dynamic and uncer-
tain than the latter. During its execution, a managed software-
intensive system’s behavior often deviates from the identified nom-
inal model [10, 25, 49]. This model deviation, if goes beyond a certain
region, will invalidate the theoretical guarantees and threaten the
safety of the whole system [9, 17, 46, 65].

Such problem of model deviation has been acknowledged in
the literature, but to our knowledge no satisfactory solution was
given [10, 11, 23, 44, 49, 60]. Using robust controllers [11, 44] can
mitigate the problem by tolerating slight deviations at the cost of
less optimality and more complexity in controller design, but the
problem itself remains. Some authors proposed to monitor system
outputs and rebuild the controller through system re-identification
once the outputs violate some specified criteria [10, 23, 49]. How-
ever, this approach is less sensitive in that model deviations could
have happened much earlier than their manifestation as abnormal
outputs. It is crucial to report dangerous deviations as early as pos-
sible before they cause disastrous consequences. Sliding window-
based model deviation detection approaches [12, 23, 35] require
extensive domain knowledge and human efforts to tune their pa-
rameters. The emerging learning-based approaches [17, 57] reduce

https://doi.org/10.1145/3468264.3468548
https://doi.org/10.1145/3468264.3468548

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

the dependence on domain knowledge and human efforts, but are
not speedy and accurate enough, as to be shown in Section 5.

An alternative way is to monitor the managed system’s model
parameter values directly, which could save the time that a model
deviation propagates to the managed system’s abnormal output.
Since the nominal model’s parameter values are unobservable, one
have to calculate these values based on the observable inputs and
outputs. However, both internal uncertainty (e.g., process noise)
and external uncertainty (e.g., measurement error) [19, 64] would
lead to an inaccurate calculation. Sliding window could alleviate the
impact of measurement error to some extent, but it is less effective
in handling slight model deviation, and still faces the problem of
manually tuned parameters.

In this paper, we propose the Model-guided Deviation Detector
(MoD2) to support timely and accurate model deviation detection
for control-SASs. The key intuition of MoD2 is to estimate the nom-
inal model’s parameter values. Unlike most existing works that
treat the nominal model’s parameter as a deterministic variable,
MoD2 describes the parameter as a stochastic variable. The identi-
fied value is now considered as the parameter’s mean value, and we
additionally identify the parameter’s variance. By leveraging the
knowledge of the parameter’s distribution, MoD2 uses Bayesian
estimation to achieve an effective estimation of its value. MoD2
also integrates two lightweight techniques, namely uncertainty
compensation and safe region quantification, to further improve
its accuracy without sacrificing too much timeliness.

Based on MoD2, an adaptation-supervision mechanism is imple-
mented to alleviate the impact of model deviation with a dual-track
adaption strategy. The mechanism uses a supervision loop to guard
the adaptation loop of a control-SAS. Once MoD2 detects model
deviation, our mechanism will switch the control theory-based op-
timal controller for a mandatory controller that ensures the manda-
tory requirements but may scarify some system utilization. When
model deviation disappears, the SAS can switch back to the optimal
controller again.

We evaluate our approach on three representative exemplar SAS
systems, namely, SWaT [8], RUBIS [18], and video encoder [50].
We compare MoD2’s performance with two baseline approaches
(i.e., a sliding window-based detector [23], and an SVM-based de-
tector [17]). The results show the effectiveness of MoD2 which
achieves 93.3% shorter detection delay, 39.4% lower FN rate, and
25.2% lower FP rate, as well as the usefulness of MoD2-based
adaptation-supervision mechanism by reporting a 29.2% lower ab-
normal rate.

In the remainder of this paper, section 2 gives the necessary back-
ground and discusses the motivation of our work. Then, section 3
introduces the adaptation-supervision mechanism, and section 4 de-
tails our MoD2 with three main techniques. Next, section 5 shows
the experimental evaluation of our approach. Finally, section 6
discusses the related work, and section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the background of control-SASs,
with a motivating example of Secure Water Treatment testbed
(SWaT for short) [8]. Then we discuss the impact of model deviation
on self-adaptive systems as the limitation of existing approaches in

Yanxiang Tong, Yi Qin, Yanyan Jiang, Chang Xu, Chun Cao, and Xiaoxing Ma

handling model deviation. Next, we introduce Bayesian estimation
and Kalman filter for estimating model parameter values. We then
discuss our scope and assumptions in addressing the problem of
model deviation.

2.1 Control-based self-adaptive systems

In recent years, control-based self-adaptive systems [16, 23, 25, 26,
56, 59, 63] became a research hotspot for its less burden on the de-
velopers’ mathematical and software knowledge to design ad-hoc
self-adaptation solutions. Filieri et al. first propose a methodol-
ogy (i.e., the push-button method [23]) to implement control-SASs,
which includes a systematic data collection and model fitting proce-
dure (a.k.a., system identification [48]) and a control theory-guided
controller designing procedure (a.k.a., controller synthesis). The
identification procedure enables the automatic construction of an
approximate model for the managed system, and the synthesized
controller provides theoretical guarantees to the derived managing
system’s behavior in controlling adaptation.

Specifically, in system identification, control-SASs assume that
the managed system’s behavior can be captured by a quantitative
nominal model to improve productivity and cope with infinite kinds
of environmental dynamics. A nominal model describes the rela-
tionship between the managed system’s output, the controller’s
output, and the environmental input. Many types of nominal mod-
els [52] have been proposed to support self-adaptation in various
scenarios, including linear time-invariant system [4, 35, 61], linear
time-varying system[37], and nonlinear time-invariant system [11].

In controller synthesis, control-SASs leverage various control-
theoretical techniques to design the optimal controllers for various
scenarios. Two of the most prevailing techniques are proportional-
integral-derivative (PID) control [24, 44, 60], and model predictive
control [4, 5, 49, 51]. A controller’s workflow resembles the con-
ventional self-adaptation mechanism that consists of continuous
adaptation loops of monitoring, analyzing, planning, and executing.
A controller’s behavior should be subject to the control properties,
for example, the SASO properties (i.e., stability, accuracy, settling
time, and overshoot) [36].

Here, we use the SWaT system to explain the concepts of control-
SASs. SWaT is a fully operational scaled-down water treatment
plant that produces doubly-filtered drinking water. SWaT consists
of five water-processing tanks, as well as the pipes connecting those
tanks. The in-coming valve and out-going valve of each tank can be
controlled remotely. The objective of a self-adaptive SWaT system
is to enable safe (e.g., no overflow or underflow in any of the tanks)
and efficient (e.g., maximum clean water production) water filtering
under different environmental situations (e.g., the initial water level
of the five tanks and the in-coming water flow of the first tank).

To build such a self-adaptive SWaT system following the control-
SASs methodology, we can use the following linear time-invariant
system to describe the SWaT in system identification.

{z(k)=A.f(k—1)+B-ﬁ(k—1)

y(k) = C - % (k) @

where (k) denotes a serial number of the adaption loop. For the
variables, X¥(k) describes SWaT’s current running state (i.e., the
in-coming and out-going water of the five tanks), ¥(k — 1) describes

Timely and Accurate Detection of Model Deviation in Self-Adaptive Software-Intensive Systems

the historical state, y(k) describes the system’s output value (i.e.,
the measured water levels of five tanks), and i (k—1) describes its re-
ceived control signal (i.e., the valves’ opening time in an adaptation
loop).

The parameters in Equation 1, including A, B, and C, are identi-
fied for the system since their values cannot be measured directly.
Each of these parameters represents a specific dynamical feature of
SWaT. Specifically, A represents the system’s delay property, which
describes the interval between the time when a controller requests
to turn on/off a valve and the time when the valve is turned on/off.
B represents the system’s controllability, which describes the influ-
ence of turning on/off a valve upon the system’s running state. C
represents the system’s observability, which describes the mapping
between each tank’s in-coming and out-going water flow and the
measured water level.

Based on the identified parameter values, SWaT’s developers
provide a suite of well-designed controllers to enable the system’s
adaptation to different environmental situations. These controllers
leverage both control-theory and rule-based domain knowledge to
guide the control strategies of various valves. Concretely, there are
a total of six controllers. Four control the in-coming and out-going
valves of one or two tanks, respectively. Two controllers control the
general water treatment procedure and coordinate with the other
four.

Control theory guarantees the self-adaptive SWaT system sub-
jecting to the control properties. For example, the water in all tanks
should neither overflow nor underflow (i.e., subject to no overshoot
property). Meanwhile, the water level in all tanks should reach the
desired level quickly (i.e., subjecting to low settling time property),
in order to maximize SWaT’s clean water production.

2.2 Model deviation in control-based
self-adaptive systems

Model deviation undermines control-SASs. Model deviation is the
mismatch between the nominal model’s identified parameter values
and its actual values at runtime. The occurrence of model devia-
tion may invalidate the theoretical guarantees provided by control
theory and could potentially cause the abnormal behavior of a
control-SAS.

Let us consider two real-world cases of model deviation in SWaT.
The first one is reported by Adepu et al. that network attacks
could cause SWaT’s abnormal behavior [1]. For instance, if the
controller’s signal of turning on a valve is blocked or tampered
with, the valves’ opening time will be changed accordingly. Then,
when the controlled tank’s water level exceeds an alarming level,
the corresponding controller will still control the valves according
to the unchanged B value and cause tank overflow.

In the second case, the physical condition of SWaT’s pipes and
valves will also lead to model deviation. For example, physical
abrasion [21] may wear the valves and result in the change of water
flow rate (i.e., system’s controllability feature B). When a controller
still controls the valves based on the unchanged B value, the water
flow into the tank will be smaller than what the controller expected
and may cause the tank to underflow.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Lots of self-adaptive system researchers acknowledge the exis-
tence of model deviation, and propose different solutions. In push-
button-method [23], Filieri et.al first identify model deviation, ad-
dress it by monitoring system outputs, and rebuild the controller
through system re-identification. Some other works [10, 24, 49]
also rely on re-identification to handle model deviation. Some re-
searchers focus on improving the controller’s robustness to tolerate
slight deviations [11, 44].

These solutions have their own limitations. For the robust strength-
ening approaches, model deviation does cause the controller de-
signed by field experts to behave abnormally, in our previous moti-
vating example of SWaT. We cannot simply assume that developer-
designed controllers could overcome model deviation as in [11, 44].
For the re-identification approaches, it is too slow to be effective
since model deviations could have happened much earlier than
their manifestation as abnormal outputs (Kang et.al report that it
takes around 5 minutes for a detected attack to fail SWaT’s execu-
tion [42]). The latency between model deviation’s occurrence and
its observable consequences make it crucial to report dangerous
deviations as early as possible.

As we discussed in Section 1, the challenge is to balance the
detection’s timeliness and accuracy. Existing works fail to bal-
ance this in detecting model deviation. For the sliding window-
based approaches that have been exploited long by self-adaptive
researchers [12, 23, 35], their performance largely depends on man-
ual or empirical settings (e.g., size of the sliding window-based
and the threshold for monitored system’s output values). It often
requires extensive domain and mathematical knowledge for an ap-
propriate setting, which is impossible for non-experts. For those
newly-proposed learning-based approaches [17, 57], they usually
combine multiple test results for improving their detection accu-
racy, which prolongs their detection delay. What’s more, these ap-
proaches often require binary training sets, the positive instances of
which can hardly be prepared since the managed system’s behavior
under model deviation is unpredictable.

Our MoD2 addresses the challenge above following the guidance
of the nominal model. First, MoD2 fundamentally decreases its
detection delay by deriving the nominal model’s parameter values
with Bayesian estimation. Second, MoD2 improves its estimation
accuracy and detection accuracy with two supporting techniques,
namely, uncertainty compensation and safe region quantification.
Third, MoD2 further reduces the time overhead of its estimation
and detection by Kalman filter and probability-based quantification,
respectively.

2.3 Bayesian estimation and Kalman filter

Bayesian estimation [29] enables one to estimate an unobservable
parameter value (the value of B(k) in our case). To improve its
accuracy, the approach requires a priori information about the pa-
rameter’s distribution (i.e., mean value and variance of all collected
B values in system identification). Bayesian estimation works in an
iterative manner. In each iteration, we first compute a prior distribu-
tion of the concerned parameter that matches the past observations
and the identified distribution. Then, the prior is combined with
the current observations to obtain a posterior distribution which is
reported as the current estimation value.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Yanxiang Tong, Yi Qin, Yanyan Jiang, Chang Xu, Chun Cao, and Xiaoxing Ma

y: desired managed system’s output

1(k): measured controller’s output
a(k),w(k),v(k): compensated environmental uncertainty

y(k): measured managed system’s output

N\
l MoD2 Safe region Uncertainty Parameter deviation
| ‘Adaptation- — quantification compensation estimation
R . l
| o |1 o
| | Switcher u(k) (i) a(k) y(k) loop
| e; Vi deslasinis Sl S S i S ~
| { Adaptation
| Control Theory I | - loop
| | | Mandatory Environment [
Controller
| QY | a(k) |
| Managed | |y Optimal (k) Managed) |
l System | Controller System /I
N4 _ N ___ _

Figure 1: Overview of MoD2-based adaptation-supervision mechanism

In Bayesian estimation, one has to calculate the prior and poste-
rior distributions in every iteration, which brings a considerable
overhead. Kalman filter reduces this overhead by deriving the cur-
rent prior and posterior distributions through updating the previous
distributions. Specifically, Kalman filter uses a recursive factor K
(also called Kalman gain) to approximate the relationship of the
prior/posterior distributions from two or multiple consecutive it-
erations. When such relationship is linear or can be approximate
linearly, Kalman filter could produce an accurate and fast estimation
of the concerned parameter.

2.4 Our scope and assumptions

Due to the various application scenarios of self-adaptive systems,
the proposed MoD2 has its scope and assumptions for ease of dis-
cussion and presentation. We delineate our scope based on ex-
isting work and inherit pre-existing assumptions from other self-
adaptation or control theory research. Notice we only give our
assumptions and clarify their realistic here. We will discuss MoD2’s
limitations brought by these assumptions in Section 4.4.
Nominal model. In this work, we focus on linear time-invariant
system (LTI system for short). LTI system is one of the most widely-
used models among self-adaptation researchers [35, 49, 60], and
has been successfully applied in different subjects [4, 61].

Model deviation. We focus on two types of model deviation, dis-
crete behavior and inaccurate environmental interaction, following
the two reported cases in our motivating example of SWaT. One
occurs when a controller produces its control signals (e.g., block
or tamper with the instruction to open the valves) and the other
occurs when the managed system receives the control signals (e.g.,
water flow changing due to physical abrasion).

Based on the two types of model deviation, in this work, we focus
on the deviation of the managed system’s controllability features
(i.e., the parameter B) and assume that the managed system’s delay
and observability features (i.e., parameter A and C) are compara-
tively stable. Recent literatures [1, 2, 41] report and validate the
deviation of the controllability features.

We also assume that B(i) is a unary parameter for ease of pre-
sentation. Nevertheless, our approach can be applied to a multinary
parameter.

Environmental uncertainty. Environmental uncertainty is the
known unknown information at runtime [4, 20]. As a result, one
has to model the target uncertainty first before addressing it. In
this paper, we assume that the environmental uncertainty can be
described by a linear time-invariant model or a normal distribu-
tion. The former is a widely used approach in describing uncertain
environmental input by the control theory [13, 62], and the latter
is a typical setting for describing uncertainty’s influence among
self-adaptive systems [19, 64].

3 AN ADAPTATION-SUPERVISION
MECHANISM

To address the problem of model deviation, this paper proposes an
adaptation-supervision mechanism to supervise the execution of
control-SASs as shown in Figure 1. Intuitively, we added a new par-
allel supervision loop to a control-SAS. The supervisor continuously
monitors the adaptation loop. When model deviation is detected,
the supervisor immediately “falls back” to a safer (but less efficient)
mandatory controller and recovers to the main control loop after
successful model re-identification.

The supervisor consists of three major components: a model-
guided deviation detector (MoD2, which is this paper’s primary
focus), a mandatory controller, and a switcher. Underlined blocks
in Figure 1 denote these newly added components.

In the adaption-supervision mechanism, we first require the
system designer to provide a mandatory controller that guarantees
minimal system functionality (i.e., mandatory requirements) even
on nominal-model deviation. Mandatory controllers have been
extensively studied by the community of control-SASs, e.g., by
adopting architectural-guided [27] or goal-driven rules [58].

With both control theory-based optimal controller and manda-
tory controller, the switcher coordinates them on the MoD2. The
switcher immediately changes the adaptation loop from using the
optimal controller to using the mandatory controller on model
deviation to reduce the unpredictable influences to a minimum.
The switcher is also responsible for consistently conducting model
re-identification and turning back to the optimal controller when
the abnormal situation has disappeared (e.g., the network attack of

Timely and Accurate Detection of Model Deviation in Self-Adaptive Software-Intensive Systems

SWaT was blocked by a firewall). The switcher can be implemented
following the push button method [23].

Therefore, the design of an efficient and effective model-deviation
detector (our MoD2) should be the key point.

4 MOD2: MODEL-GUIDED DEVIATION
DETECTOR

The three major technical designs (and contributions) of the pro-
posed MoD2 are:

(1) MoD2 directly estimates the nominal model’s parameter values
by modeling the nominal model’s parameter B as a time-
variant stochastic variable B(k). In contrast with existing
work, which is mostly based on the observable outputs y(k),
this white-box approach accelerates the model-deviation
detection and improves the accuracy.

(2) MoD2 compensates environmental uncertainty in the nominal
model by introducing compensation terms to reduce the con-
sequences of measurement errors, yielding improved model-
deviation estimation accuracy. MoD2 adopts the Kalman
filter, a fast Bayesian estimator, to accelerate its estimation
on the parameter values.

(3) MoD2 directly quantifies the nominal model’s theoretical safe
region without the need for calibrating an empirical thresh-
old based on execution traces of the managed system. By
using the necessary conditions under which model deviation
can make the controller behave abnormally, MoD2 directly
(and thus timely) reports model deviation with sufficient
probabilistic confidence.

These technical details are elaborated as follows.

4.1 Parameter deviation estimation

We first describe the concerned model parameter B as a time-variant
stochastic variable B(k):

B(k) =B(k—1) + - (B— B(k - 1)) + q(k) ()

where: (1) The parameter’s deviation is described as the sudden
changes of centripetal force w that drive B(k) away from identi-
fied B. (2) The parameter’s inherent fluctuation is described as a
random walk procedure, the step of which subjects to a normal
distribution g(k). If the system is free from model deviation (i.e.,
w = 0), the variance of g(k) equals to the variance of B(k), which
can be acquired along with the identification of B.

Combining Equation 1 and Equation 2 enables MoD2 to estimate
the value of B(k) in a Bayesian approach. Specifically, in the i-th
adaptation loop, a prior distribution of B(i) is computed that fits the
previous posterior distribution B(i — 1) and identified variance of
q(k), according to Equation 2. Then, MoD?2 calibrates the posterior
distribution of B(i) by updating the prior distribution of B(i) with
the current observation (i.e., (i — 1), #(i — 1), and y(i)), according
to Equation 1.

Note that we might not be able to observe the value of system
state X(i) directly in some cases. We also use Bayesian estimation
to estimate ¥ (i)’s value. In this situation, each iteration of Bayesian
estimation has two steps. MoD2 first estimates X(i — 1)’s value by
treating the previous estimated B(i — 1) as an observation. Then,

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

the obtained X (i —1) is used to estimate the current parameter value

B(i).

4.2 Uncertainty compensation

Due to various environmental uncertainties, a direct estimation
of B(i)’s value is usually inaccurate. To reduce uncertainty-based
errors in the estimations of B(i), we refine the nominal model by
compensating for environmental uncertainty and accelerate our
estimation with the Kalman filter.

Using compensation terms to refine a nominal model is a widely-
used technique in the control theory community [30]. However, one
has to carefully design the effective compensation terms. Here, we
introduce three different compensation terms. One is the measured
environmental input a(k), which can be used to posterior calibrate
our estimated B(i)’s value. We use a linear time-invariant model to
describe the influence brought by environmental input. The other
two compensation terms, w(k) and v(k), capture the influences of
measurement errors on the managed system’s internal state and
external behavior, respectively. According to our assumptions, we
depict w(k) and v(k) as normal distribution of variance W and V.

Then, the nominal model (Equation 1) is refined with three com-
pensation terms, as follows.

X(k)=A-X(k-1)+B(k)-u(k—1)+y-a(k) + w(k)
{y(k) = C5(k) +o(k)
where y is the coefficient of the linear model that describes a(k).
The value of y which is acquired during system identification along
with other model parameters.

Based on Equation 3, MoD2 further alleviates the impact of mea-
surement error by transforming the nominal model to difference
equations. In the original nominal model, the measurement error
on parameter values (e.g., A) is multiplied by other variables (e.g.,
%X(k —1)). As a result, a large variable value would amplify the mea-
surement error and make the following estimation less accurate.
MoD2 uses the difference equation to address the impact of this
multiplier effect. If the managed system’s behavior is free from
severe changes, a variable’s values in two consecutive adaptation
loops should not differ a lot [14, 55], and the difference equation can
thus alleviate the multiplier effect. Otherwise, it could be easier for
us to detect. In this paper, we use Avar (k) to denote the difference
between variable var’s values in the k-th and (k — 1)-th adapta-
tion loop (i.e., Avar(k) = var(k) — var(k — 1)). Thus the difference
equations of the nominal model are listed as follows.

AX(k) = A- AX(k — 1) + B(k) - Aii(k — 1) + y - Aa(k) + w(k)

{Ay(k) =C-AX(k) +v(k)

4)

Notice that if the controller’s control signal keeps unchanged,
the difference equations are ineffective since the estimated B will
be eliminated by multiplying zero (Au(k — 1) = éi(k) —u(k - 1) =
0). In this situation, we use the original nominal model to estimate
B(k)’s value instead of the difference equations.

With those compensation terms introduced, it would be ex-
tremely time-consuming to perform the original Bayesian estima-
tion. MoD2 accelerates its estimation by using Kalman filter [43, 45],

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

a more efficient linear quadratic estimation approach. Conceptu-
ally, Kalman filter works by updating the prior distribution of B(i)
with the latest observation only (i.e., X(i — 1), #(i — 1), and y(i)),
instead of re-calculating the priori with all historical observations
(ie., ¥(0)-%(i — 1), 4(0)-u(i — 1), and y(0)-y(i)). MoD2’s Kalman
filter parameter estimation also follows an iterative manner as the
original Bayesian estimation. However, it can give a more accurate
normal distribution of the estimated parameters by filtering the
effects of compensation terms (i.e., a(i), w(i), and v(i)).

4.3 Safe region quantification

Once the distribution of B(i) is estimated, MoD2 has to check
whether it suffers model deviation or not. We combine the nominal
model listed in Equation 4 with a theoretical safe region and use a
cumulative distribution function to calculate the probability that
B(i)’s actual value exceeds the safe region. Unlike existing works
that use a manual or empirical threshold, MoD2’s safe region repre-
sents the necessary condition under which the controller’s behavior
is guaranteed by control theory. As a result, MoD2 would distin-
guish the normal executions from the abnormal ones even though
the executions have not been empirically explored and makes its
detection more accurate.

It is the control theory, which helps developers design the orig-
inal controllers, that shapes the safe regions for the derived con-
trollers. A controller’s safe region can be captured by either formal
analysis or experimental study. For PID and MPC controllers, their
safe region can be theoretically derived by frequency response anal-
ysis [38, 40] and linear matrix inequality [31], respectively. How to
capture a theoretical safe region is out of our scope. If it is extremely
hard to capture the theoretical safe region of a complex controller,
we will turn back to empirical study or statistic analysis on the
execution traces. Formally, parameter B’s safe region ©®p can be
defined as the interval between a lower bound @é and an upper
bound @g.

Given a controller’s safe region ©p, B(i)’s cross-border detec-
tion can still be inaccurate due to the estimation error of B(i)’s
value. Most existing works combine possible results in different
adaptation loops to improve their accuracy, which inevitably delays
their detection. MoD2’s estimated distributions of the parameter
value naturally combines the past observations and avoid using
multi-time detections.

MoD2 uses a probability-based approach to detect B’s deviation
with a confidence interval CI. The probability that B(i)’s value
falls within the safe region [Hé, Gg] can be calculated by a cumula-
tive distribution function, as shown in Equation 5, where fp () (x)
is B(k)’s probability density function. Particularly, the estimated
B(i)’s distribution in our case is subject to a normal distribution
(i.e., B(i) ~ N(u(i), P(i))). If the derived probability p(i) exceeds
a confidence interval CI, MoD2 will report model deviation and
trigger the switching of adaptation.

0%
50 = [foey s)

MoD2 also uses an active detector to handle the situation when
the optimal controller produces no control signal by using hypoth-
esis testing to reveal possible model deviation. We use normal

Yanxiang Tong, Yi Qin, Yanyan Jiang, Chang Xu, Chun Cao, and Xiaoxing Ma

distribution to depict the variation properties (e.g., residuals) of the
managed system’s output when no control signal comes and detect
model deviation by checking whether the measured variation is
consistent with the pre-identified distribution.

4.4 Discussions on MoD2

Assumptions and limitations. In Section 2.4 we listed our as-
sumptions in MoD2 design. Now, we discuss the limitations brought
by these assumptions, as well as the possible solutions to free our
approach from these assumptions.

First, we assume that the managed system’s nominal model is
described as a LTI model. Our approach can be directly extended
to other types of nominal models since the three major techni-
cal designs of MoD2 are independent of the types of the nominal
model. Other types of models might make Kalmar filter less ef-
fective due to their more complicated forms. However, extended
Kalman filter [43] would alleviate this by supporting non-linear or
time-variant nominal models.

Second, we assume that the deviated parameter is the control-
lability parameter (i.e., B) only, and the parameter has a unary
description. Since our parameter estimation on B(k) requires no
more than the identified value of the other two parameters (i.e., A
and C), MoD2 can also be extended to detect model deviation on
one of these two parameters. However, detecting model deviation
on multiple parameters is challenging and remains open. As we
explained previously that B’s unary description is for the ease of
discussion only, MoD2 can be applied to a multi-unary parameter.
In fact, in our later experiments, we already run MoD2 to detect
model deviation on binary parameters (with subject SWaT [8]).

Third, we assume that the compensated uncertainty terms can

be described in normal distributions. Though normal distribution
can be applied to most types of uncertainties reported by recent
literature [19, 64], our approach can adapt to other types of uncer-
tainty models by estimating model parameter value using other
filters, such as particle filter.
Parameter as stochastic variable. To the best of our knowledge,
all existing works treat the nominal model’s parameter as a de-
terministic variable. Different from these pieces of works, MoD2
considers the concerned parameter as a stochastic variable, which is
the key to the estimation in our approach. Besides the parameter’s
mean value derived through system identification, we addition-
ally use the parameter’s variance to make our estimation robust in
handling the parameter’s inherent fluctuation.

Leveraging the parameter’s variance does not bring a significant
burden to our approach. In fact, during system identification, such
variance information is once collected but eventually overlooked.
In system identification, the parameter’s value is derived based
on a collection of execution traces of the managed system. Since
different traces could infer different candidate parameter values,
linear regression is introduced to predict a parameter value that
best fits all execution traces. Conventional system identification
only reports this fitted value, and the candidate values are simply
discarded. However, when the nominal model’s parameter is treated
as a stochastic variable, those candidates actually reflect the inher-
ent inflection of the parameter. As such, in our MoD2, the previous
fitted value is considered as the mean value of the parameter, and

Timely and Accurate Detection of Model Deviation in Self-Adaptive Software-Intensive Systems

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

configs | env;

para;

deviation

input extracted from a real-world original settings of the valves from injecting manipulation disturbance to the system’s

SWaT~ testbed [8] existing literature [8, 17] valves according to [21]

&
SWaT* Example: friction factor value of the = Example: in-coming or out-going wa- Example: envy that changes the friction factor
b valves ter rates of the valves value from 0.0 to a random value in (0.0, 0.35)

input extracted from a real-world original settings from existing litera- injecting network attacks to the system’s internal
testbed [8] ture [8, 17] communications according to [17]

SWaT*,

A Example: friction factor value of the Example: in-coming or out-going wa- Example: para 4 that tampers with a valve’s control

valves ter rates of the valves signal from 0 (closed) to 1 (open)
user request stream generated based original settings in RUBIS from exist- injecting attacks to the system’s settings that mis-

RUBIS™ on two real-world workloads [6, 7] ing literature [54] matches the running environment according to [3]

&

RUBIS* Example: an array of the time inter- Example: working state of the servers ~ Example: para, that changes servers’ working

vals of user requests state’s value from “lowFidelity” to “highFidelity”
_ | video streams based on published original settings in video encoder introducing different types of video streams
Encoder dataset [23] from existing literature [23]
&
Encodert | Example: road traffic video streams ~ Example: parameter values of the im- Example: envy that replaces road traffic video
age compression algorithm streams with advertisement video streams

Table 1: Test configurations

the distances between the candidate values and the fitted value are
quantized as the parameter’s variance (i.e., Q).

5 EXPERIMENTS

We evaluate the effectiveness and usefulness of MoD2 and MoD2-
based adaptation-supervision mechanism (and a Python implemen-
tation!) on three representative subject systems.

Our comparison baselines are SWDetecter [12] (the model de-
viation detection approach in the push-bottom method [23]) and
LFM [17], which is one of the latest abnormal detection approaches
for self-adaptive systems.

Particularly, we study the following two research questions:

RQ1 Can MoD2 timely and effectively detect model deviation for
self-adaptive systems?

RQ2 How useful is MoD2-based adaptation-supervision mechanism
in terms of avoiding abnormal self-adaptation behavior?

5.1 Experiment setup

5.1.1 Experimental subjects. We selected three prevalent subject
systems from the community of self-adaptive systems. Each subject
is provided with a control theory-derived controller and a manda-
tory controller, both of which are either given by the subject’s
developers or implemented following existing works.

e SWaT, a water treatment testbed we described in Section 2.
The original control theory-derived controller is inherited
from the programmable logic controllers in [17]. The manda-
tory controller (developed following [27, 58]) keeps the tank
water level between upper and lower alarm levels locally.

e RUBIS, a web auction system (studied in [11, 44, 54]) that
can adapt to workload/network changes by adjusting the
number of servers to satisfy quality-of-service levels. The

Ihttps://github.com/tongyanxiang/MoD2

original control theory-derived controller (from the push-
button method [23]) is tuned for high system utilization
and low response time. The mandatory controller from [44]
guarantees in-time response and maintains affordable system
utilization.

e Video encoder, a video compression and streaming system
(studied in [49-51]) that can adaptively change compression
parameters to balance the throughout and video quality. The
original control theory-derived controller (also from [23])
adjusts the compression parameters to achieve smooth and
high-resolution video streams. The mandatory controller
(also developed following [27, 58]) keeps a no-lagging video
stream by decreasing the compression parameter values ac-
cordingly.

5.1.2 Test configurations. We conducted the experiments on pre-
defined test configurations and compare MoD2 to SWDetecter and
LFM over a series of test configurations (configurations for short).
Given a subject system, each configuration is a simulated system
run that consists of at most one model deviation. A configuration
is negative if it contains no model deviation. Otherwise, a configu-
ration that contains one model deviation is categorized as positive.

Since the subject’s controllability features (i.e., the value of B)
cannot be directly manipulated, we simulate model deviation re-
sulted from discrete behavior by changing the subject’s parameter
values, and inaccurate environmental interaction by changing its
environmental inputs.

Specifically, a configuration is denoted by a quintuple of (env;,
envy, para;, parag, t), in which env; and envy denote the initial and
deviated environmental input, para; and para, denote the initial
and deviated model parameters, and ¢ denotes the time point of
model deviation. Initially, the subject and its running environment
are reset with the initial parameters para; and env;. At time point
t, the model parameter is changed to para, and the environmental
input is changed to env,. For a negative configuration, para; =

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Yanxiang Tong, Yi Qin, Yanyan Jiang, Chang Xu, Chun Cao, and Xiaoxing Ma

| SWaT~ & SWaT*

RUBiS™ & RUBiS* | Encoder” & Encoder"

MTD(s) EN(%) FP(%)
MoD2 40.11 0.0 0.0
SWDetector (0=30) | 274.92 94.0 93.3
SWDetector (0=60) oT 100.0 0.0

MTD(s)

FN(%) FP(%) | MID(s) EN(%) FP(%)
0.00 0.0 0.3 0.00 2.0 3.0

365.00 4.0 10.0 0.00 40.0 46.5
355.74 15 5.5 0.01 1.0 2.5

Table 2: Comparison of MoD2 and SWDetector

network attack 1

physical abration

network attack 2

g

80011 800 800

(V]

=1

= 600 \\ 600 600

g 1t | 41

- \

5 400 400 400

2 |

8

3 200 200 200
900 1000 1100 1200 1300 1400 1500 1600 900 1000 1100 1200 1300 1400 1500 1600 700 800 900 1000 1100 1200 1300 1400

&

& 04 041\ 0.4

]

2

g 0.2 0.2 0.2

£

P

1%}

® 0.0 0.0 0.0
900 1000 1100 1200 1300 1400 1500 1600 900 1000 1100 1200 1300 1400 1500 1600 700 800 900 1000 1100 1200 1300 1400

< 75 -0.2 0.2

<

Q -03 0.0

< 50

2 -0.4 -0.2

T 25

E -0.5 -0.4 /)

@ 0.0

[}

900 1000 1100 1200 1300 1400 1500 1600
time(s)

—+— model deviation injection —— MoD2's detection

=068 1000 1100 1200 1300 1400 1500 1600
time(s)

—— SWnDetector's detection

=060 860 900 1000 1100 1200 1300 1400
time(s)

LFM's detection abnormal behavior appearance

Figure 2: A case study on three positive configurations

parag and env; = envy for the entire execution. For a positive
configuration, para;/env; is changed to a different parag/env, at
time t.

Our criteria for creating configurations followed existing works.
The negative configurations for SWAT (SWaT~) and RUBIS (RUBiS ™)
cover most settings in existing works [8, 54], and the negative con-
figurations for VideoEncoder (Encoder™) are created based on [23]
(we cannot cover it since the original datasets are not available). The
positive configurations cover most reported model-deviated set-
tings in SWAT (SWaT}, and SWaT},) [17] and RUBiS (RUBiS*) [3].
VideoEncorder’s positive configurations (Encoder*) were designed
by our-own since no existing settings available. Each group includes
200 different configurations. Table 1 describes our configurations
in detail.

5.1.3 Evaluation criteria. We measure the timeliness by the mean
time delay (MTD, i.e., the average interval between the deviation
point and the detection point of a positive configuration). Notice
that we only consider the correctly-detected positive configurations
in MTD.

We measure the accuracy by the false-negative rate (FN rate,
i.e,, the percentage of positive configurations that are falsely de-
tected to be negative) and the false-positive rate (FP rate, i.e., the
percentage of negative configurations that are falsely detected to be
positive). Noticing that each positive configuration can be divided
into a negative part (i.e., execution before the time point of model
deviation) and positive part (i.e., execution after the time point of
model deviation). FP also accounts for the positive configurations
that are falsely detected in their negative parts.

We measure the usefulness by the positive configuration’s ab-
normal rate (i.e., the ratio of a subject system’s abnormal operation
time to its suffered model deviation time). The abnormal operation
time is measured as the time during which the subject system vi-
olates any control properties (e.g., overshoot of the water level in
SWaT) or fails to fulfill its mandatory requirements (e.g., overflow
or underflow in SWaT). The model deviation time is measured as
the subject system’s execution time after we inject model deviation.
Notice that a positive configuration may never violate any control
property, as we discussed in Section 2, model deviation is a neces-
sary condition, not a sufficient condition, to the system’s abnormal
behavior.

5.1.4 Experiment procedure. We conducted all the experiments on
an ECS server of Alibaba Cloud with 8 CPUs and 16GB of memory.

To answer RQ1, we compare three approaches’ achieved MTD,
FN rate, and FP rate on different configuration sets. We first com-
pare the performance of MoD2 against SWDetector on SWaT™,
SWaTB, RUBIS™, RUBiS*, Encoder, Encoder*. We then compare
the performance of MoD2, SWDetector, and LFM on SWaT";, since
LFM is proposed to address the challenges of attack-induced ab-
normal behavior only. The SWDetector is set with two different
thresholds (8 = 30 or 0 = 60), which are two of the suggested
settings in [53].

We also study the impact of system identification, which could
produce various identification values required by MoD2 (i.e., y,
W, V). We compare the performance of MoD2 with the identified
values from different amounts of data (20-100%, step of 20%).

Timely and Accurate Detection of Model Deviation in Self-Adaptive Software-Intensive Systems

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

| SWaT~ & SWaT* |

RUBiS™ & RUBiS* |

Encoder” & Encoder™

identification error MTD(s) FN(%) FP(%) | identification error
20% [-2.5%, 3.8%] 40.21 0.0 0.0 [-26.6%, 11.7%]
40% [-1.3%, 2.5%] 40.17 0.0 0.0 [-20.2%, 6.4%]
60% [0.0%, 1.3%] 40.21 0.0 0.0 [-4.5%, 19.9%]
80% [0.0%, 1.3%] 40.21 0.0 0.0 [-1.3%, 7.4%]
100% [0.0%, 0.0%] 40.11 0.0 0.0 [0.0%, 0.0%]

MTD(s) FEN(%) FP(%) | identification error MTD(s) FN(%) FP(%)
0.00 0.0 0.3 [1.2%, 6.4%) 0.00 2.0 3.0
0.00 0.0 0.3 [-3.4%, 0.5%] 0.00 2.0 3.0
0.00 0.0 0.3 [0.2%, 6.1%] 0.00 2.0 3.0
0.00 0.0 0.3 [-0.2%, -0.2%] 0.00 2.0 3.0
0.00 0.0 0.3 [0.0%, 0.0%] 0.00 2.0 3.0

Table 3: Comparison of MoD2’s performance with different amounts of identification traces

‘ original ‘ MoD2-based ‘ SWDetector-based (0=30) ‘ SWDetector-based (0=60)
SWaT 14.0% (162.45s) | 0.0% (0.00s) 10.6% (114.35s) 7.1% (71.32s)
RUBIS 61.1% (1953.00s) | 2.0% (60.00s) 11.1% (398.10s) 10.6% (386.40s)

video encoder 16.2% (2.92s) 0.4% (0.08s)

6.6% (1.19s) 0.1% (0.02s)

Table 4: Comparison of the abnormal rates w/wo adaptation-supervision mechanisms

To answer RQ2, we compare three subjects’ abnormal rate on dif-
ferent configuration sets with and without MoD2-based adaptation-
supervision. We also implemented and evaluated two SWDetector-
based adaptation-supervision mechanisms to study the role of our
proposed MoD2. We measure the abnormal rate on SWaT*, RUBiSY,
and Encoder™ respectively.

5.2 Experiment Results

RQ1 (effectiveness) Table 2 shows the performance of MoD2 and
SWDetector for the three subjects. Considering detection timeli-
ness, MoD2’s detecting time for model deviation varies in different
subjects. The reported MTD is 40.11 seconds for SWaT, 0.00 seconds
for both RUBIS and video encoder. When comparing with SWDe-
tectors, MoD2’s achieved MTD is 185.76s smaller on average for
the subjects. We notice that the two SWDetectors report similar de-
tection delay for subject video encoder. This is because our injected
model deviation would produce a severe change of the managed
system’s output, which favors the SWDetector’s monitoring on the
output values.

As for detection accuracy, MoD2 achieves good FN and FP rate
in detecting model deviation. Generally, the average FN rate of
MoD2 is 0.7% (0.0%-2.0%) and the average FP rate of MoD2 is 1.1%
(0.0%-3.0%). We notice that for SWaT, the reported FN and FP rate
are zero. For RUBiS, MoD2’s reported FN rate is zero and FP rate is
0.3% which is caused by the active detector. MoD2 reports a 3.0%
FN rate and a 2.0% FP rate for video encoder. This is caused by the
difference between the selected initial estimate variance of model
parameter value and its true value.

Comparing with SWDetectors of different settings, MoD2’s FN
rate is averagely 39.4% lower (—1.0%-100.0%), and its FP rate is
averagely 25.2% lower (—0.5%-93.3%). When the SWDetector uses
the best setting only (i.e., the window size ws is 28, and the threshold
0 is 60), MoD2’s FN rate is averagely 33.5% lower (—1.0%-100.0%),
and its FP rate is averagely 1.6% lower (—0.5%—-5.2%). We notice that
MoD2’s accuracy is slightly lower than SWDetectors on the subject
of VedioEncoder. In this subject, the injected model deviation would
immediately cause severe changes in the managed system’s output,
which favors the sliding window-based approach. MoD2 sacrifices
its accuracy in detecting such noticeable model deviations slightly
(1.0% lower FN rate and 0.5% lower FP rate) in exchange for its

accuracy in detecting covert model deviations (50.8% higher FN
rate and 2.7% higher FP rate).

| SWaT%
MTID(s) FN(%) FP(%)
MoD2 11.15 0.0 0.0
LFM 886.45 1.0 0.5
SWDetector (6=30) 84.60 85.0 84.0

SWDetector (0=60) 1.06 37.5 0.0
Table 5: Comparison results of MoD2, SWDetector and LFM

Table 5 gives the experimental results on dataset SWaT;" (ie.,
the positive configurations by injecting attacks to SWaT system).
Basically, MoD2 outperforms the other three approaches (including
the SWDetectors of different settings) in terms of detection timeli-
ness and detection accuracy. MoD2 successfully detect all model
deviations in a quite short time (averagely 11.15 seconds) with no
false alarm. The learning-based LFM approach also achieves a good
detection accuracy. However, it requires much longer time (886.45
seconds, 78.5 times longer than MoD2’s) to work. The reason for
LFM’s large detection delay is that the accuracy of the trained clas-
sifier should be above a threshold of 85% to avoid false alarms. For
SWDetector with a better setting (i.e., § = 60), although it reports
the shortest detection time (1.06 seconds) and no false alarm, it fails
to detect 37.5% positive configurations, which is the worst among
the compared approaches.

To better demonstrate MoD2’s effectiveness in detecting model
deviation, we also perform a detailed study on the positive con-
figurations that the baseline approaches fail to give a timely and
accurate detection. We list three of those positive configurations
in Figure 2. The first and the third configurations are gained by
injecting network attacks to SWaT, and the second one is derived
by injecting manipulation disturbance to SWaT’s valves. For each
of the configurations, we list the measured output value y(k) (in the
first line chart) and MoD2’s estimated parameter values B(k) (in the
last two line charts, corresponding to the two arguments in B(k)).
We use different marked lines to denote the time of model deviation
injection, the time of MoD2’s detection, the time of SWDetector’s
detection, the time of LFM’s detection, and the time abnormal be-
havior appeared respectively. For the time of MoD2’s detection,

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

we also mark it on the corresponding B;(k)’s line chart, indicating
which argument exceeds its safe region.

For the first configuration, all of the three approaches success-
fully detect model deviation. However, LFM requires longer time
since it has to gather multiple testing results to give an accurate
detection. Such high detection delay makes LFM’s detection unfeasi-
ble since SWaT’s execution has already broken the control property
(i.e., stability property) by the time it reports. For the second con-
figuration, SWDetector’s detection is too slow to be effective since
the monitored output value shows no difference from the negative
configuration in the early stages. For the third configuration, both
SWDetector and LFM fail to detect model deviation. Their miss-
ing detections are reasonable since this model deviation has not
caused severe consequences in SWaT’s execution till the end of the
execution trace. However, according to [17], this model deviation
will eventually cause SWaT’s abnormal behavior if the execution is
prolonged from 30 minutes to 60 minutes.

Table 3 compares MoD2’s performance with different amounts of
traces for identification. We also listed the variation of the identified
values (i.e., identification error) used by MoD2. Generally, changing
the amount of identification traces has a limited impact on MoD2’s
effectiveness. The mean detection delay fluctuates in a small range
(40.175-40.21s for SWaT and 0.00s—0.00s for both RUBiS and video
encoder) as the used amount of identification traces changes. MoD2
with different amounts of identification traces reports exactly the
same FN and FP rate. Table 3 reveals MoD2’s stable performance.

In summary, MoD2 can detect model deviation with low detection
delay (average 13.37 seconds) and good accuracy (0.8% FN rate and
1.0% FP rate). Comparing with the baseline approaches, MoD2 achieves
a smaller detection delay (average 185.76 seconds or 93.3% smaller),
as well as a better accuracy (39.4% lower FN rate and 25.2% lower FP
rate).

RQ2 (usefulness) Table 4 compares the three subjects’ abnor-
mal rates on different positive configuration sets with different
adaptation-supervision mechanisms. For the subjects with our
MoD2-based mechanism, the average abnormal rate is 1.2% (0.0%—
2.0%). Comparing with the subjects without our mechanisms (de-
noted as original), the abnormal rates drop 29.2% (14.0%-59.1%) on
average. This result validates the usefulness of our approach in alle-
viating the impact of model deviation. Particularly, our mechanism
achieves a zero abnormal rate for SWaT system (i.e., prevent all
model-deviation-caused severe consequences), while the abnormal
rate without our mechanism is 14.0%. So even if SWaT’s optimal
controllers are carefully designed and implemented by the field
experts, one cannot assume that the controllers’ robustness could
handle all cases of model deviation [17].

We also list each subjects’ abnormal operation time along with
their suffered abnormal rates. Each subject averagely suffers 706.12
seconds abnormal operation time in each configuration without
MoD2. In other words, the corresponding control-SASs fail to pro-
vide any guarantees on the subject systems’ behavior in nearly
11.77 minutes. Notice that the aforementioned abnormal operation
time could be longer if model deviation has not been appropri-
ately addressed, since the execution we collected only lasts for 30
minutes.

Comparing with the two SWDetector-based mechanisms, the
results reflect the importance of our MoD2 in guarding the subjects’

Yanxiang Tong, Yi Qin, Yanyan Jiang, Chang Xu, Chun Cao, and Xiaoxing Ma

adaptation. Specifically, MoD2-based mechanism achieves 6.5%
lower abnormal rate (3.0%-8.9%), as well as 141.87 seconds shorter
abnormal operation time. We believe that MoD2 is more effective
in protecting control-SASs.

The result displayed in Table 4 can also partly reflect the correct-
ness of detecting model deviation based on estimated parameter
values. The abnormal rate with supervision indicates the output
abnormalities prevented by our detection (1.2% on average), which
echoes the low FN rate of MoD2. The abnormal rate without super-
vision would imply the low FP rate of MoD2, and that average 30.4%
of the experimental subjects’ execution time suffers abnormalities.

In summary, Our MoD2-based adaptation-supervision mechanism
can alleviate the impact of model deviation on the managed system.
With the support of our mechanism, the abnormal rate averagely
drops by 29.2% comparing the original control-SASs and averagely
drops by 6.5% comparing the SWDetector-based mechanism.

5.3 Threats to Validity

One major concern on the validity of our empirical conclusions
is the selection of evaluation subjects. We only use three subjects
as the managed systems. This might harness the generalization of
our conclusions. A comprehensive evaluation requires a full under-
standing of the managed systems, as well as their suitable control
theory-derived controllers. This requirement restricts our choice
of possible experimental subjects. Nevertheless, we believe that
our selected subjects are representative of their different platforms
(including network systems and cyber-physical systems) and ar-
chitectures (including single controller and multiple controllers).
Moreover, all of the selected subjects are widely used by other self-
adaptation researchers as their experimental subjects or motivating
systems.

Another concern is about injecting model deviations in the posi-
tive configurations. Since we cannot directly manifest the subject
system’s controllability features, we can only modify its parameters
or inputs to simulate model deviation. This might make our experi-
mental settings less realistic. To address this problem, we carefully
design the injected model deviations. For SWaT, the model devi-
ation is based on the reported physical abrasion [8] and network
attacks [17]. For RUBIS, the model deviation is designed accord-
ing to reported failures in web service systems [3]. And for video
encoder, we use real-world video streams to simulate the model
deviation.

6 RELATED WORK

Control theory has been widely exploited to implement self-adaptive
systems for their theoretical guarantees. Some pieces of related
work use control-theoretical techniques to refine their architecture-
based system model for the managed system. For example, Checiu
et al. use a server request model to describe the behavior of an
adaptive web service system [15]. Filieri et al. use discrete-time
Markov chain model to depict service-oriented applications [22].
Some others use control-theoretical techniques to guide the design
of the managing system. Konstantinos et al. [4] propose the CobRA
framework for designing self-adaptive web-services, which uses
model predictive control to guide the adaptation strategy of the
managing system. Gabriel et al. [54] combine control-SASs and

Timely and Accurate Detection of Model Deviation in Self-Adaptive Software-Intensive Systems

traditional architecture-based SASs by introducing discrete-time
Markov chain in their PLA adaptation framework. Different from
these pieces of work, the focus of MoD2 is not designing the manag-
ing system but providing self-adaptation assurances in the presence
of model deviation. In other words, our work can be regarded as an
complementary for them by alarming their managing system the
occurrence of model deviation.

Model deviation has received the attention of self-adaptation re-
searchers since control-SASs emerged. According to control theory,
the precision of the nominal model in control-SASs directly deter-
mines the effectiveness of the derived managing systems. Baresi
et al. propose using a grey-box discrete-time feedback controller
to support robust self-adaptation that can overcome slight model
deviation [11]. Filieri et al. use continuous learning mechanisms to
keep the nominal model updating at runtime [24]. Maggio et al. use
Kalman filter to revise the identified nominal model by updating its
state values [49]. Comparing with these pieces of works, our MoD2-
based mechanism concentrates on the model deviation that would
cause the managing system to violate control properties, as well
as the managed system behaving abnormally. Together with these
works that address slight deviation of the model parameters, we
can achieve model-deviation-free self-adaptation for control-SASs.

The key component of our proposed mechanism is a timely and
accurate detector for model deviation, which is similar to the works
on abnormal detection. Many research efforts have been contributed
to both control theory community and self-adaptation community.
Window-based approach is the most-widely used abnormal detec-
tion approach in control theory area [32], which is similar to the
compared SWDetector approach in Section 5. Ozay et al. propose a
set-membership approach to detect property violations occurring
in the control system [33, 34]. For self-adaptation researchers, Jiang
et al. derive invariants by observing messages exchanged between
system components for robotic systems [39]. Chen et al. propose an
SVM-based method to detect network attacks to SWaT system [17].
Qin et al. use context information to refine the derived invariants
and combine multiple testing results to improve the accuracy of
abnormal detection [57].

As we discussed in Section 2, the major difference between our
MoD2 and these approaches is that we directly estimate the values
of nominal model’s parameters instead of monitoring the system’s
output values. By doing so, we reduce the delay time for model
deviation detection.

Environmental uncertainty has always been a challenge for self-
adaptation researchers. Most of these works focus on uncertainty’s
impact on the managed system’s state. Esfahani et al. identify inter-
nal uncertainty and external uncertainty and propose a probability-
based approach to assess both the positive and negative conse-
quences of uncertainty [20]. Ghezzi et al. propose an adaptation
framework to manifest non-functional uncertainty via model-based
development [28]. Angelopoulos et al. also use Kalman filter to
alleviate uncertainty’s impact on the estimated states of the man-
aged system’s nominal model [4]. MoD2’s handling of uncertainty
follows these works. However, the focus of our MoD2 is on the
uncertainty’s impact on the nominal model’s parameters, which is
addressed by our parameter deviation estimation technique.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

7 CONCLUSION

In this paper, we present an adaptation-supervision mechanism
with the addition of supervision loop for alleviating the impact of
model deviation in control-SASs. The key to our mechanism is a
novel detector, MoD2, which combines different techniques, includ-
ing parameter deviation estimation, uncertainty compensation, and
safe region quantification, to balance the detector’s timeliness and
accuracy. We conduct experiments to show the effectiveness of
MoD2 and the usefulness of MoD2-based adaptation-supervision
mechanism.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their
comments. This work is supported by Key-Area Research & Devel-
opment Program of Guangdong Province (Grant #2020B010164003),
Natural Science Foundation of China (Grants #62025202, #61932021,
#61902173), and Natural Science Foundation of Jiangsu Province
(Grants #BK20190299).

REFERENCES

[1] Sridhar Adepu and Aditya Mathur. 2016. An investigation into the response of a
water treatment system to cyber attacks. In Proceedings of 17th IEEE International
Symposium on High Assurance Systems Engineering. IEEE, 141-148.

[2] Cristina Alcaraz and Stephen Wolthusen. 2014. Recovery of structural controlla-
bility for control systems. In International Conference on Critical Infrastructure
Protection. Springer, 47-63.

[3] Nadia Alshahwan and Mark Harman. 2011. Automated web application testing
using search based software engineering. In Proceedings of the 26th IEEE/ACM
International Conference on Automated Software Engineering. IEEE, 3-12.

[4] Konstantinos Angelopoulos, Alessandro Papadopoulos, Vitor Silva Souza, and
John Mylopoulos. 2016. Model predictive control for software systems with Co-
bRA. In Proceedings of the 11th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. IEEE, 35-46.

[5] Konstantinos Angelopoulos, Alessandro Papadopoulos, Vitor Silva Souza, and
John Mylopoulos. 2018. Engineering self-adaptive software systems: From re-
quirements to model predictive control. ACM Transactions on Autonomous and
Adaptive Systems 13, 1 (2018), 1-27.

[6] Martin Arlitt and Tai Jin. 2000. A workload characterization study of the 1998
world cup web site. IEEE Network 14, 3 (2000), 30-37.

[7] Martin Arlitt and Carey Williamson. 1996. Web server workload characterization:
The search for invariants. ACM SIGMETRICS Performance Evaluation Review 24,
1(1996), 126-137.

[8] Kaung Myat Aung. 2015. Secure water treatment testbed (SWaT): an overview.
Singapore University of Technology and Design (2015).

[9] Abhijit Badwe, Ravindra Gudi, Rohit Patwardhan, Sirish Shah, and Sachin Pat-
wardhan. 2009. Detection of model-plant mismatch in MPC applications. Journal
of Process Control 19, 8 (2009), 1305-1313.

[10] Saeid Barati, Ferenc Bartha, Swarnendu Biswas, Robert Cartwright, Adam Duracz,

Donald Fussell, and et al. 2019. Proteus: Language and runtime support for self-

adaptive software development. IEEE Software 36, 2 (2019), 73-82.

Luciano Baresi, Sam Guinea, Alberto Leva, and Giovanni Quattrocchi. 2016. A

discrete-time feedback controller for containerized cloud applications. In Pro-

ceedings of the 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering. 217-228.

Michele Basseville and Igor Nikiforov. 1993. Detection of abrupt changes: theory

and application. Vol. 104.

Mogens Blanke, Michel Kinnaert, Jan Lunze, Marcel Staroswiecki, and Jochen

Schroder. 2006. Diagnosis and fault-tolerant control. Vol. 2. Springer.

Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger

Kienle, Marin Litoiu, and et al. 2009. Engineering self-adaptive systems through

feedback loops. In Software Engineering for Self-Adaptive Systems. Springer,

48-70.

Laurentiu Checiu, Bogdan Solomon, Dan Ionescu, Marin Litoiu, and Gabriel

Iszlai. 2011. Observability and controllability of autonomic computing systems

for composed web services. In Proceedings of the 6th IEEE International Symposium

on Applied Computational Intelligence and Informatics. IEEE, 269-274.

[16] Xing Chen, Shihong Chen, Yun Ma, Bichun Liu, Ying Zhang, and Gang Huang.
2019. An adaptive offloading framework for Android applications in mobile edge
computing. Science China Information Sciences 62, 8 (2019), 1-17.

—_
jon

[12

[13

[14

[15

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

(17

[18]

[19]

[20

[
=

[22

[23

[24]

[25

[26]

[27

[28

[33

[34

[35]

[36]

[37

[38]
[39

[40]
[41

[42]

Yuqi Chen, Christopher Poskitt, and Jun Sun. 2018. Learning from mutants: Using
code mutation to learn and monitor invariants of a cyber-physical system. In
Proceedings of the 39th IEEE Symposium on Security and Privacy. IEEE, 648—660.
OW?2 Consortium et al. 2008. Rubis: Rice university bidding system. URL
http://rubis. ow2. org (2008).

Mario de Castro and Ignacio Vidal. 2019. Bayesian inference in measurement
error models from objective priors for the bivariate normal distribution. Statistical
Papers 60, 4 (2019), 1059-1078.

Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. 2011. Taming uncertainty
in self-adaptive software. In Proceedings of the 19th ACM SIGSOFT Symposium on
the Foundations of Software Engineering and 13th European Software Engineering
Conference. 234-244.

Oreste Fecarotta, Riccardo Martino, and Cristina Morani. 2019. Wastewater pump
control under mechanical wear. Water 11, 6 (2019), 1210.

Antonio Filieri, Carlo Ghezzi, Alberto Leva, and Martina Maggio. 2011. Self-
adaptive software meets control theory: A preliminary approach supporting
reliability requirements. In Proceedings of 26th IEEE/ACM International Conference
on Automated Software Engineering. IEEE, 283-292.

Antonio Filieri, Henry Hoffmann, and Martina Maggio. 2014. Automated design of
self-adaptive software with control-theoretical formal guarantees. In Proceedings
of the 36th International Conference on Software Engineering. 299-310.

Antonio Filieri, Henry Hoffmann, and Martina Maggio. 2015. Automated multi-
objective control for self-adaptive software design. In Proceedings of the 10th Joint
Meeting on Foundations of Software Engineering. 13-24.

Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolas D’Ippolito,
Ilias Gerostathopoulos, Andreas Berndt Hempel, and et al. 2015. Software engi-
neering meets control theory. In Proceedings of the 10th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems. IEEE Press,
71-82.

Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolas D’ippolito,
Ilias Gerostathopoulos, Andreas Hempel, and et al. 2017. Control strategies for
self-adaptive software systems. ACM Transactions on Autonomous and Adaptive
Systems 11, 4 (2017), 1-31.

David Garlan, S-W Cheng, A-C Huang, Bradley Schmerl, and Peter Steenkiste.
2004. Rainbow: Architecture-based self-adaptation with reusable infrastructure.
Computer 37, 10 (2004), 46-54.

Carlo Ghezzi, Leandro Sales Pinto, Paola Spoletini, and Giordano Tamburrelli.
2013. Managing non-functional uncertainty via model-driven adaptivity. In
Proceedings of the 35th International Conference on Software Engineering. IEEE,
33-42.

Jayanta K Ghosh, Mohan Delampady, and Tapas Samanta. 2007. An introduction
to Bayesian analysis: theory and methods. Springer Science & Business Media.
Graham Goodwin, Stefan Graebe, and Mario Salgado. 2001. Control system design.
Jorn Gruber, Daniel Ramirez, Teodoro Alamo, and Eduardo Camacho. 2011. Min—
Max MPC based on an upper bound of the worst case cost with guaranteed
stability. Journal of Process Control 21, 1 (2011), 194-204.

Fredrik Gustafsson and Fredrik Gustafsson. 2000. Adaptive filtering and change
detection. Vol. 1. Citeseer.

Farshad Harirchi, Zheng Luo, and Necmiye Ozay. 2016. Model (in)validation
and fault detection for systems with polynomial state-space models. In American
Control Conference. IEEE, 1017-1023.

Farshad Harirchi and Necmiye Ozay. 2018. Guaranteed model-based fault detec-
tion in cyber physical systems: A model invalidation approach. Automatica 93
(2018), 476-488.

Zhijian He, Yao , Enyan Huang, Qixin Wang, Yu Pei, and Haidong Yuan. 2019.
A system identification based oracle for control-cps software fault localization.
In Proceedings of the 41st International Conference on Software Engineering. IEEE,
116-127.

Joseph Hellerstein, Yixin Diao, Sujay Parekh, and Dawn Tilbury. 2004. Feedback
control of computing systems. Wiley Online Library.

Emilio Incerto, Mirco Tribastone, and Catia Trubiani. 2017. Software performance
self-adaptation through efficient model predictive control. In Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineering.
IEEE, 485-496.

Rolf Isermann. 2013. Digital control systems. Springer Science & Business Media.
Hengle Jiang, Sebastian Elbaum, and Carrick Detweiler. 2013. Reducing failure
rates of robotic systems though inferred invariants monitoring. In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 1899—
1906.

Michael Johnson and Mohammad Moradi. 2005. PID control. Springer.

Raphael Jungers, Atreyee Kundu, and Maurice Heemels. 2017. Observability
and controllability analysis of linear systems subject to data losses. IEEE Trans.
Automat. Control 63, 10 (2017), 3361-3376.

Eunsuk Kang, Sridhar Adepu, Daniel Jackson, and Aditya Mathur. 2016. Model-
based security analysis of a water treatment system. In Proceedings of the 2nd
International Workshop on Software Engineering for Smart Cyber-Physical Systems.
IEEE, 22-28.

Yanxiang Tong, Yi Qin, Yanyan Jiang, Chang Xu, Chun Cao, and Xiaoxing Ma

Youngjoo Kim and Hyochoong Bang. 2018. Introduction to Kalman filter and
its applications. Introduction and Implementations of the Kalman Filter 1 (2018),
1-16.

Cristian Klein, Martina Maggio, Karl-Erik Arzén, and Francisco Hernandez-
Rodriguez. 2014. Brownout: Building more robust cloud applications. In Proceed-
ings of the 36th International Conference on Software Engineering. 700-711.
Qiang Li, Ranyang Li, Kaifan Ji, and Wei Dai. 2015. Kalman filter and its appli-
cation. In Proceedings of the 8th International Conference on Intelligent Networks
and Intelligent Systems. IEEE, 74-77.

Dan Ling, Ying Zheng, Hong Zhang, Weidong Yang, and Bo Tao. 2017. Detection
of model-plant mismatch in closed-loop control system. Journal of Process Control
57 (2017), 66-79.

Marin Litoiu, Mary Shaw, Gabriel Tamura, Norha Villegas, Hausi Miller, Holger
Giese, and et al. 2017. What can control theory teach us about assurances in
self-adaptive software systems? In Software Engineering for Self-Adaptive Systems
III. Assurances. Springer, 90-134.

Lennart Ljung. 1999. System identification. Wiley encyclopedia of electrical and
electronics engineering (1999), 1-19.

Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry
Hoffmann. 2017. Automated control of multiple software goals using multiple
actuators. In Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering. 373-384.

Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry
Hoffmann. 2017. Self-adaptive video encoder: Comparison of multiple adaptation
strategies made simple. In Proceedings of 12th IEEE/ACM International Symposium
on Software Engineering for Adaptive and Self-Managing Systems. IEEE, 123-128.
Claudio Mandrioli and Martina Maggio. 2020. Testing self-adaptive software
with probabilistic guarantees on performance metrics. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1002-1014.

Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache. 2020.
Approximation-refinement testing of compute-intensive cyber-physical models:
An approach based on system identification. In Proceedings of the 42nd Interna-
tional Conference on Software Engineering. IEEE, 372-384.

Douglas Montgomery. 2020. Introduction to statistical quality control. John Wiley
& Sons.

Gabriel A Moreno, Javier Camara, David Garlan, and Bradley Schmerl. 2015.
Proactive self-adaptation under uncertainty: a probabilistic model checking ap-
proach. In Proceedings of the 10th Joint Meeting on Foundations of Software Engi-
neering. 1-12.

Alexander Palm, Andreas Metzger, and Klaus Pohl. 2020. Online reinforcement
learning for self-adaptive information systems. In Proceedings of the 32nd In-
ternational Conference on Advanced Information Systems Engineering. Springer,
169-184.

Tharindu Patikirikorala, Alan Colman, Jun Han, and Liuping Wang. 2012. A
systematic survey on the design of self-adaptive software systems using control
engineering approaches. In Proceedings of the 7th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. IEEE, 33-42.

Yi Qin, Tao Xie, Chang Xu, Angello Astorga, and Jian Lu. 2019. CoMID: Context-
Based Multiinvariant Detection for Monitoring Cyber-Physical Software. [EEE
Transactions on Reliability 69, 1 (2019), 106-123.

Mazeiar Salehie and Ladan Tahvildari. 2012. Towards a goal-driven approach to
action selection in self-adaptive software. Software: Practice and Experience 42, 2
(2012), 211-233.

Stepan Shevtsov, Mihaly Berekmeri, Danny Weyns, and Martina Maggio. 2017.
Control-theoretical software adaptation: A systematic literature review. IEEE
Transactions on Software Engineering 44, 8 (2017), 784-810.

Stepan Shevtsov and Danny Weyns. 2016. Keep it simplex: Satisfying multiple
goals with guarantees in control-based self-adaptive systems. In Proceedings
of the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 229-241.

Stepan Shevtsov, Danny Weyns, and Martina Maggio. 2019. SimCA*: A Control-
theoretic approach to handle uncertainty in self-adaptive systems with guar-
antees. ACM Transactions on Autonomous and Adaptive Systems 13, 4 (2019),
1-34.

Silvio Simani, Cesare Fantuzzi, and Ronald Jon Patton. 2003. Model-based fault
diagnosis techniques. In Model-based Fault Diagnosis in Dynamic Systems Using
Identification Techniques. Springer, 19-60.

Hui Song, Amit Raj, Saeed Hajebi, Aidan Clarke, and Siobhan Clarke. 2013. Model-
based cross-layer monitoring and adaptation of multilayer systems. Science China
Information Sciences 56, 8 (2013), 1-15.

Guojun Wang and Siva Sivaganesan. 2013. Objective priors for parameters in a
normal linear regression with measurement error. Communications in Statistics-
Theory and Methods 42, 15 (2013), 2694-2713.

Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Singhal, Arif Merchant,
Pradeep Padala, and et al. 2009. What does control theory bring to systems
research? ACM SIGOPS Operating Systems Review 43, 1 (2009), 62-69.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Control-based self-adaptive systems
	2.2 Model deviation in control-based self-adaptive systems
	2.3 Bayesian estimation and Kalman filter
	2.4 Our scope and assumptions

	3 An adaptation-supervision mechanism
	4 MoD2: Model-guided Deviation Detector
	4.1 Parameter deviation estimation
	4.2 Uncertainty compensation
	4.3 Safe region quantification
	4.4 Discussions on MoD2

	5 Experiments
	5.1 Experiment setup
	5.2 Experiment Results
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion
	References

