

第一讲 命题逻辑

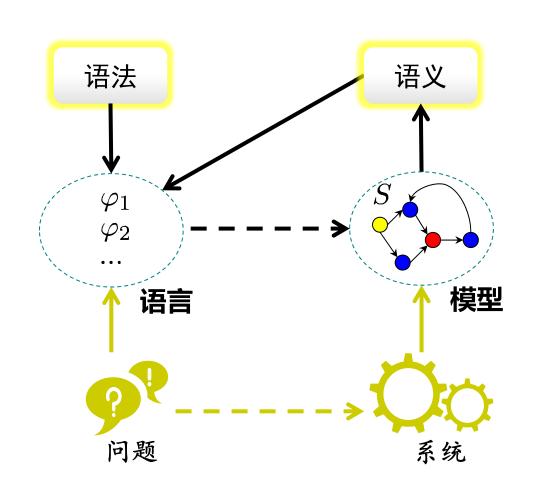
2024/2/29

1

内容提要

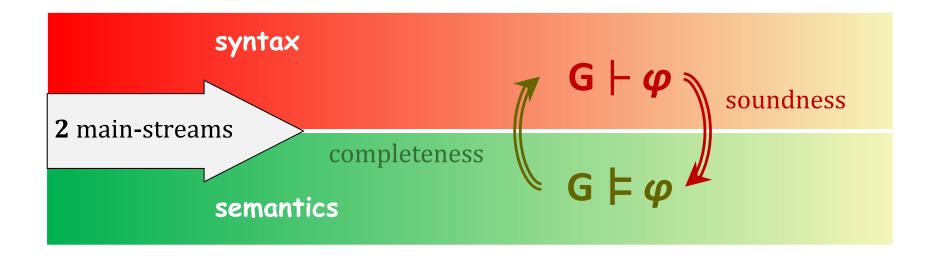
- 命题逻辑的语法
 - > 符号表
 - > 命题的定义
 - > 结构归纳法
- 命题逻辑的语义
 - ▶ 什么是语义
 - ▶ 析合/合析范式 | 逻辑等价
- 自然推理系统及性质
 - > 公理与规则
 - ▶ 可靠性| 完备性| 紧致性

语法和语义



语法和语义

语法(Syntax)与语义(Semantics)是数理逻辑的两个基本要素。



考虑下述C++程序


```
#include <iostream>
#include<string.h>
using namespace std;
int main()
   int a, b, sum; //定义两个整型变量
                   //输入两个变量并赋值
   cin>>a;
   cin>>b;
   sum = a + b; //计算两个变量的和
   cout << sum ; //输出两个变量的和
   return 0;
```

如何验证C++程序的正确性?

- 两条路径:
 - ▶ 程序正确性证明: 霍尔逻辑
 - > 使用公理描述程序语句对于计算状态的改变
 - > 可执行文件正确性验证: 软件测试
 - > 验证输入输出是否满足程序规约要求
- 两者之间的联系
 - ➤ Soundness (可靠性): 程序正确 → 程序执行正确
 - ➤ Completeness (完备性): 程序执行正确 → 程序正确

字母表

定义1.1 (字母表). 字母表由以下成份组成:

- 1. 命题符: $P_0, P_1, P_2, \dots, P_n, \dots, n \in \mathbb{N}$, 记 $PS = \{P_n \mid n \in \mathbb{N}\}$
- 2. 联结词: ¬, ∧, ∨, →
- 3. 辅助符: "(", ")"

注:

- 1. 本讲义中,命题符之集 PS 为可数无穷集,i.e. $|PS| = \aleph_0$ 。
- 2. 有些教科书还引入其他一些联结词,如 ↔ 等。
- 3. 为了表达更清楚,我们可再引入一些辅助符,如[,]等。

命题的定义

定义1.2 (命题).

- 1. 命题符为命题;
- 2. 若 A, B 为命题,则 $(\neg A)$, $(A \land B)$, $(A \lor B)$ 和 $(A \to B)$ 为命题;
- 3. 命题仅限于此。

也可以用Bacus-Naur Form定义命题为:

$$\varphi := P \mid (\neg \varphi) \mid (\varphi_1 \land \varphi_2) \mid (\varphi_1 \lor \varphi_2) \mid (\varphi_1 \to \varphi_2)$$

$$\sharp \vdash P \in PS.$$

用封包法也可定义命题:

令 C_{\neg} , C_{\wedge} , C_{\vee} , C_{\rightarrow} 为所有字母表符号串之集上的函数:

$$C_{\neg}(A) = (\neg A)$$
$$C_{\ast}(A, B) = (A \ast B)$$

这里 * ∈ {∧, ∨, →}。

定义1.3 (命题集). 所有命题的集合 *PROP* 是满足以下条件的最小集合:

- 1. $PS \subseteq PROP$;
- 2. 若 $A \in PROP$,则 $C_{\neg}(A) \in PROP$;
- 3. 若 $A, B \in PROP$,则 $C_{\wedge}(A, B)$, $C_{\vee}(A, B)$ 和 $C_{\rightarrow}(A, B) \in PROP$;

即 PROP 为在函数 C_{\neg} , C_{\wedge} , C_{\vee} 和 C_{\rightarrow} 下 PS 的归纳闭包。

括号引理(Parenthesis Lemma)

11

引理1.4 (括号引理). 若 A 为命题,则 A 中所有左括号的个数等于右括号的个数。

构造序列

引理1.5 $A \in PROP$ 等价于存在有穷序列 A_0, A_1, \dots, A_n 使 $A 为 A_n$ 且对任何 $i \le n$,

或(a) $A_i \in PS$

或(b) 存在 k < i 使 A_i 为 $(\neg A_k)$

或(c) 存在 k, l < i 使 A_i 为 $(A_k * A_l)$, 这里 * 为 \land , \lor , \rightarrow 之一。

以上序列 A_0, A_1, \dots, A_n 被称为 A 的构造序列。

欲证 PROP = PROP',只需证 (1) $PROP' \subseteq PROP$ 和 (2) $PROP \subseteq PROP'$

- (1) 设 $A \in PROP'$,从而有 A_0, A_1, \dots, A_n 满足对任何 $i \leq n$ 有(a) 或 (b) 或 (c)。对 i 归纳证明 $A_i \in PROP$ 。
 - Basis i = 0, 易见 $A_0 \in PS$ 从而 $A_0 \in PROP$
 - **I.H.** 设对任何 k < i 有 $A_k \in PROP$
 - Ind. Step 对于i
 - Case(a) $A_i \in PS$ 从而 $A_i \in PROP$
 - Case(b) A_i 为 $(\neg A_k)$,这里 k < i,从而由 I.H.知 $A_k \in PROP$,因此 $A_i \in PROP$
 - Case(c) A_i 为 $(A_k * A_l)$,这里 k, l < i,从而由 I.H.知 $A_k, A_l \in PROP$,因此 $A_i \in PROP$

归纳完成,故 $A_n \in PROP$,因此 $PROP' \subseteq PROP$ 。

(2) 由于 PROP 为满足定义 1.3 中条件 (1)-(3) 的最小集合,故只需证 PROP' 满足定义 1.3 中条件 (1)-(3)。 易见 $PS \subseteq PROP'$,又当 $A, B \in PROP'$ 时 A, B 有构造序列 A_0, A_1, \cdots, A_n 和 B_0, B_1, \cdots, B_m ,从而 $(\neg A)$ 有构造序列 $A_0, A_1, \cdots, A_n, (\neg A)$,且 (A * B) 有构造序列 $A_0, A_1, \cdots, A_n, B_0, B_0, \cdots, B_m, (A * B)$,从而 PROP' 满足定义 1.3 中的条件,故 $PROP \subseteq PROP'$ 。

ш

结构归纳

- 每个命题皆有构造过程,构造过程不一定唯一。
- 若 A_0, A_1, \dots, A_n 为 A 的最短构造过程,则称 n 为 A 的构造长度。
- 下面常常会对 *A* 的结构作归纳证明一些性质, 事实上是对 *A* 的构造长度作归纳,而这是自然数上的归纳。

命题的语义

• 什么是命题的语义?

对于任意的赋值 $v: PS \to \{T, F\}$, 定义一个解释

 $\hat{v}: PROP \to \{T, F\}$

联结词定义的布尔函数

定义1.6. 令真值集 $B = \{T, F\}$,

- 联结词 ¬ 被解释为一元函数 $H_{\neg}: \mathbf{B} \to \mathbf{B};$
- 联结词 * 被解释为二元函数 $H_*: \mathbf{B}^2 \to \mathbf{B}$,这里 * $\in \{\land, \lor, \to\}$;
- H¬, H_∧, H_∨, H→ 定义如下:

P	Q	$H_{\neg}(P)$	$H_{\wedge}(P,Q)$	$H_{\lor}(P,Q)$	$H_{\rightarrow}(P,Q)$
Т	Τ	F	${ m T}$	T	${ m T}$
T	F	F	F	${ m T}$	F
F	T	${ m T}$	F	T	T
F	F	T	F	F	T

这就是所谓的真值表。

命题的语义的归纳定义

定义1.7 (命题的语义).

- v 为一个赋值指它为函数 $v: PS \to \mathbf{B}$, 从而对任何命题符 P_i , $v(P_i)$ 为T或F。
- 对于任何赋值 v,定义 $\hat{v}: PROP \to \mathbf{B}$ 如下:

$$\hat{v}(P_n) = v(P_n), n \in \mathbb{N};$$

 $\hat{v}(\neg A) = H_{\neg}(\hat{v}(A));$
 $\hat{v}(A * B) = H_{*}(\hat{v}(A), \hat{v}(B)), 这里 * \in \{\land, \lor, \rightarrow\}.$

对于命题 A, 它的解释 $\hat{v}(A)$ 为 T 或 F。

事实上,真值 $\hat{v}(A)$ 仅与 A 中出现的命题符有关。

另一种等价的语义定义

给定一个模型(赋值) $v: PS \to \mathbf{B}$,对于任意 $\varphi \in PROP$ $v \models \varphi$ 定义如下:

$$\bullet v \models P$$

•
$$v \models P$$
 iff $v(P) = T$

•
$$v \models \neg \varphi$$

iff
$$v \not\models \varphi$$

•
$$v \models \varphi_1 \land \varphi_2$$

•
$$v \models \varphi_1 \land \varphi_2$$
 iff $v \models \varphi_1$ and $v \models \varphi_2$

•
$$v \models \varphi_1 \lor \varphi_2$$

•
$$v \models \varphi_1 \lor \varphi_2$$
 iff $v \models \varphi_1 \text{ or } v \models \varphi_2$

•
$$v \models \varphi_1 \rightarrow \varphi_2$$

•
$$v \models \varphi_1 \rightarrow \varphi_2$$
 iff not $(v \models \varphi_1 \text{ and } v \not\models \varphi_2)$

iff
$$v \not\models \varphi_1 \text{ or } v \models \varphi_2$$

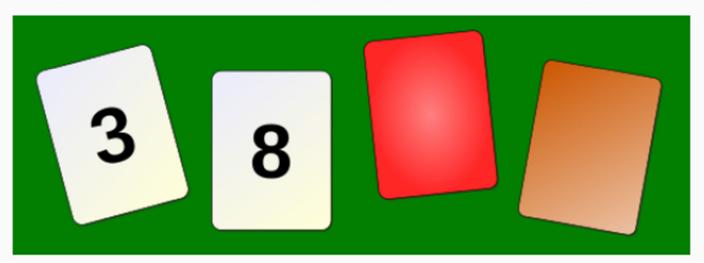
此外,还可以定义:

$$\models \varphi$$

$$\models \varphi$$
 iff $\forall v : v \models \varphi$

Wason测试

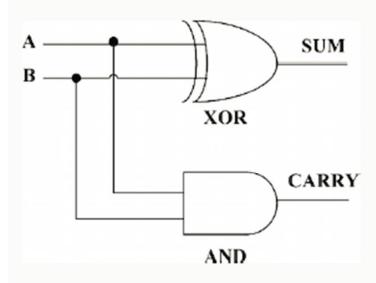
桌面上有四张牌,每张牌一面是数字,一面是颜色,能看到的情况如下。现在有人宣称:(对这些牌来说)如果一面是偶数,那么另一面一定是红色的.请问你要翻开什么牌才能完全验证他说的是不是真话?



数字电路与命题逻辑

电路中的逻辑门可通过晶体管实现:根据输入的高/低电平输出高/低电平(布尔函数).

二进制加法之半加器 (half adder)

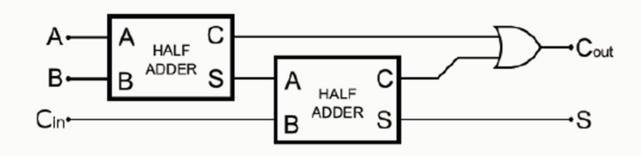


 $SUM = A XOR B, CARRY = A \wedge B$

Α	В	SUM	CARRY
1	1	0	1
1	0	1	0
0	1	1	0
0	0	0	0

数字电路与命题逻辑

二进制加法之全加器 (full adder):

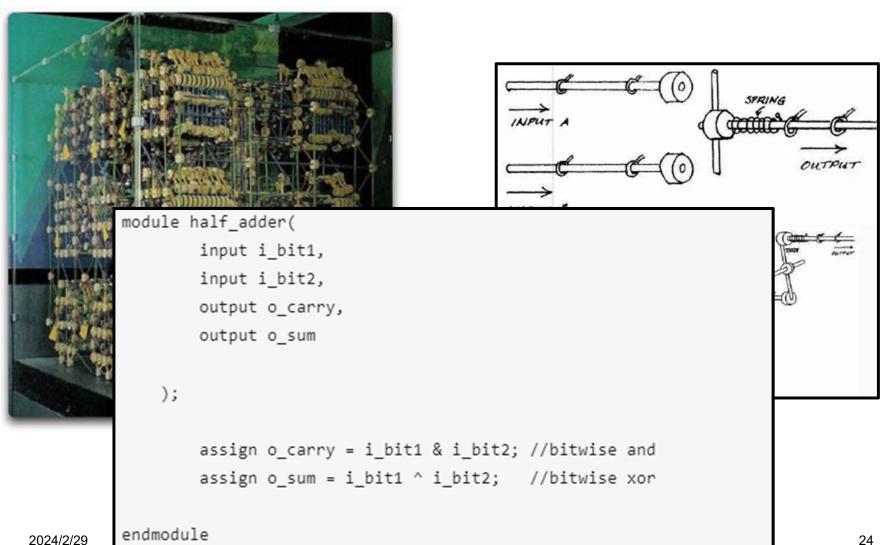


$$C_{out} = (A \land B) \lor ((A XOR B) \land C_{in}) = (A \land B) XOR ((A XOR B) \land C_{in})$$

$$S_{out} = (A \text{ XOR } B) \text{ XOR } C_{in}$$

逻辑电路可以被写成命题逻辑的公式! 两个电路输出是否等价可以被转化为两个公式是否等价 $\varphi \leftrightarrow \psi$ (电路优化).

集成电路与命题逻辑



Meta-language

注意 = 不是语言中的符号, 而是在上层语言(meta-language)中。 在上层语言中, 人们也需要用联结词如not, and, or, imply 等, 例如我们有

- $v \vDash \neg A \text{ iff not } v \vDash A$
- $v \models (A \land B)$ iff $(v \models A)$ and $(v \models B)$
- $v \models (A \lor B)$ iff $(v \models A)$ or $(v \models B)$
- $v \models (A \rightarrow B)$ iff $(v \models A)$ implies $(v \models B)$

设 A 为命题,令 $FV(A) = \{ P \in PS \mid P \text{ 出现于 } A \text{ 中 } \}$ 。

引理1.8. 设 A 为命题, v_1, v_2 为赋值,

若
$$v_1 \upharpoonright FV(A) = v_2 \upharpoonright FV(A)$$
,则 $\hat{v_1}(A) = \hat{v_2}(A)$ 。

证明: 设 $v_1 \upharpoonright FV(A) = v_2 \upharpoonright FV(A)$, 即对于 $P \in FV(A)$,

 $v_1(P) = v_2(P)$ 。以下对 A 的结构作归纳证明 $\hat{v_1}(A) = \hat{v_2}(A)...(*)$ 。

Basis 当 $A \in PS$ 时,易见 (*) 成立。

I.H. 设 *A*为*B*, *C* 时 (*) 成立。

Ind. Step

情况 $\neg: A \to \neg B$,

$$\hat{v_1}(A) = \hat{v_1}(\neg B) = H_{\neg}(\hat{v_1}(B)) \stackrel{I.H.}{=} H_{\neg}(\hat{v_2}(B)) = \hat{v_2}(\neg B) = \hat{v_2}(A)$$

情况*: $* \in \{\land, \lor, \rightarrow\}$,A 为 B * C。

$$\hat{v_1}(A) = \hat{v_1}(B * C) = H_*(\hat{v_1}(B), \hat{v_1}(C)) \stackrel{I.H.}{=} H_*(\hat{v_2}(B), \hat{v_2}(C))$$
$$= \hat{v_2}(B * C) = \hat{v_2}(A)$$

例1.1. 设 A 为 $(\neg((P \to Q) \land (Q \to P)))$,v 为赋值且 $P,Q \in PS$ 。 若 v(P) = T, v(Q) = F,则计算 $\hat{v}(A)$ 如下表:

P	Q	P o Q	$Q \to P$	$(P \to Q) \land (Q \to P)$	A
$oxed{T}$	F	F	T	F	T

Semantic Consequence

定义1.9. 设 A 为命题, v 为赋值。

- 1. v 满足 A,记为 $v \models A$,指 $\hat{v}(A) = T$;
- 2. A 为永真式 (tautology),记为 $\models A$, 指对任何 v 有 $\hat{v}(A) = T$;
- 3. A 可满足指有 v 使 $v \models A$;
- 4. 设 Γ 为命题集,A 为 Γ 的语义结论,记为 $\Gamma \models A$, 指对所有 v,若对任何 $B \in \Gamma$ 有 $\hat{v}(B) = T$ 则 $\hat{v}(A) = T$ 。

例1.2. $A \rightarrow A$, $\neg \neg A \rightarrow A$, $(A \land B) \rightarrow (B \land A)$ 为永真式。

例1.3. 证明 $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$ 为永真式。

证明:用下列的真值表法

$oxedsymbol{A}$	B	$(A \to B) \to (\neg B \to \neg A)$
Γ	Τ	${ m T}$
$oxed{T}$	F	${ m T}$
F	Т	${ m T}$
F	F	T

命题与真值函数

定义1.10. 设 A 为命题, $FV(A) = \{Q_1, \dots, Q_n\}$ 。

n 元函数 $H_A: \mathbf{B}^n \mapsto \mathbf{B}$ 定义如下:

对于任何 $(a_1,\dots,a_n) \in \mathbf{B}^n$, $H_A(a_1,\dots,a_n) = \hat{v}(A)$,

这里赋值 v 满足 $v(Q_i) = a_i (1 \le i \le n)$ 。

下面称 $f: \mathbf{B}^n \to \mathbf{B}$ 为n元真值函数,称 H_A 为由A定义的真值函数。

例1.4. 设 A 为 $(P \land \neg Q) \lor (\neg P \land Q)$,由下列真值表知

 $H_A: \mathbf{B}^2 \mapsto \mathbf{B}$ 为不可兼或运算。

$oxedsymbol{P}$	Q	A	$H_A(P,Q)$
Γ	T	F	F
Γ	F	${ m T}$	T
F	T	T	T
F	F	F	F

由 A 可定义真值函数 H_A ,反之给定真值函数 $f: \mathbf{B}^n \mapsto \mathbf{B}$,是否存在命题 A 使 $f = H_A$?

答案是肯定的!

析合范式 -合析范式

定义1.11.

- 1. 命题 A 为析合范式 ($\vee \land \inf$) 指 $A \subseteq \mathbb{R} \bigvee_{i=1}^{m} (\bigwedge_{k=1}^{n} P_{i,k})$, 这里 $P_{i,k}$ 为命题符或命题符的否定(即呈形 $\neg P_i$)。
- 2. 命题 A 为合析范式 ($\wedge \vee \text{nf}$) 指 $A \in \mathbb{R}$ $\bigwedge_{j=1}^{l} (\bigvee_{k=1}^{n} Q_{j,k})$, 这里 $Q_{i,k}$ 为命题符或命题符的否定。

以上

- $\bigwedge_{k=1}^{n} B_k$ 为 $(\dots(((B_1 \wedge B_2) \wedge B_3) \dots \wedge B_n) \dots)$ 的简写;
- $\bigvee_{k=1}^{n} B_k$ 为 $(...(((B_1 \vee B_2) \vee B_3) ... \vee B_n)...)$ 的简写。

任意真值函数均可表示为范式

定理1.12. 设 $f: \mathbf{B}^n \mapsto \mathbf{B}$ 。

- 1. 存在命题 A 其为 $\vee \wedge$ -nf 使 $f = H_A$;
- 2. 存在命题A' 其为 $\wedge \vee \text{nf}$ 使 $f = H_{A'}$ 。

•
$$T_f = \{(x_1, \dots, x_n) \in \mathbf{B}^n \mid f(x_1, \dots, x_n) = T\}$$

•
$$F_f = \{(x_1, \dots, x_n) \in \mathbf{B}^n \mid f(x_1, \dots, x_n) = F\}$$

 T_f 和 F_f 皆为有穷集, T_f 可设

•
$$T_f = \{(a_{i1}, \dots, a_{in}) \in \mathbf{B}^n \mid 1 \le i \le m\}$$

•
$$F_f = \{(b_{j1}, \dots, b_{jn}) \in \mathbf{B}^n \mid 1 \le j \le l\}$$

这里 $m + l = 2^n$ 。令

$$P_{i,k}^* = \begin{cases} P_k, & \text{ if } a_{ik} = T, \\ \neg P_k, & \text{ if } a_{ik} = F. \end{cases}$$

$$A = \bigvee_{i=1}^{m} (\bigwedge_{k=1}^{n} P_{i,k}^*)$$

又令

$$A' = \bigwedge_{j=1}^{l} (\bigvee_{k=1}^{n} Q_{jk}^{*})$$

易见 $FV(A) = \{P_1, P_2, \dots, P_n\}$ 。

欲证 $H_A = f$,

只需证 令 $v(P_i) = x_i$,我们有 $f(x_1, \ldots, x_n) = \hat{v}(A)$

只需证 $\hat{v}(A) = T$ iff $(x_1, \dots, x_n) \in T_f$, i.e. $v \models A$ iff $(x_1, \dots, x_n) \in T_f$

NAN JUNIOR DINIVERSITY OF THE PROPERTY OF THE

٠.٠

$$v \models A \text{ iff } v \models \bigvee_{i=1}^{m} \left(\bigwedge_{k=1}^{n} P_{i,k}^{*} \right) \qquad P_{i,k}^{*} = \begin{cases} P_{k}, & \ddot{\Xi} \ a_{ik} = T, \\ \neg P_{k}, & \ddot{\Xi} \ a_{ik} = F. \end{cases}$$
iff $f \in m$ 使 $v \models \left(\bigwedge_{k=1}^{n} P_{i,k}^{*} \right)$
iff $f \in m$ 使 $f \in m$ f

$$\therefore H_A = f$$
,同理可证 $H_{A'} = f$ 。

例1.5. 求 $((P \land Q) \rightarrow R) \land P$ 的 $\land \lor -\text{nf}$ 和 $\lor \land -\text{nf}$ 。

Solution. 不妨设 $P, Q, R \in PS$

先计算出下列真值表

P	Q	R	$((P \land Q) \to R) \land P$	∨∧-nf	∧∨-nf
T	T	T	T	$P \wedge Q \wedge R$	
T	T	F	F		$\neg P \lor \neg Q \lor R$
T	F	T	T	$P \wedge \neg Q \wedge R$	
T	F	F	T	$P \wedge \neg Q \wedge \neg R$	
F	T	T	F		$P \vee \neg Q \vee \neg R$
F	T	F	F		$P \vee \neg Q \vee R$
F	F	T	F		$P \lor Q \lor \neg R$
F	F	F	F		$P \lor Q \lor R$

它的 VA-nf:

$$(P \land Q \land R) \lor (P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R)$$

它的 ^V-nf:

$$(\neg P \vee \neg Q \vee R) \wedge (P \vee \neg Q \vee \neg R) \wedge (P \vee \neg Q \vee R) \wedge (P \vee Q \vee \neg R) \wedge (P \vee Q \vee R)$$

逻辑等价

定义1.13. 设 A, B 为命题, A 与 B 逻辑等价,记为 $A \simeq B$, 指对任何赋值 v,

$$v \models A \text{ iff } v \models B$$

命题1.14.

- 1. $A \simeq A$;
- 2. 若 $A \simeq B$,则 $B \simeq A$;
- 3. 若 $A \simeq B$ 且 $B \simeq C$,则 $A \simeq C$;
- 4. 若 $A \simeq B$, 则 $(\neg A) \simeq (\neg B)$;
- 5. 若 $A_1 \simeq B_1$ 且 $A_2 \simeq B_2$,则 $(A_1 * A_2) \simeq (B_1 * B_2)$ 这里 * $\in \{\land, \lor, \to\}_\circ$

任意两个具有相同命题符集的命题,它们逻辑等价 iff 它们定义的真值函数相等

命题1.15. 设 $FV(A \wedge B) = \{Q_1, \dots, Q_n\}$ 且 $H_A : \mathbb{B}^n \to \mathbb{B}$, $H_B : \mathbb{B}^n \to \mathbb{B}$ 。 我们有 $A \simeq B$ iff $H_A = H_B$ 。

命题1.16. 若 A 为命题,则存在 $\wedge \vee - \text{nf } B$ 和 $\vee \wedge - \text{nf } B'$ 使 $A \simeq B \perp A \simeq B'$,这时称 B 和 B' 分别为 A 的 $\wedge \vee - \text{nf } A \vee \wedge - \text{nf } A$ 证明:由定理1.12 和命题1.15 即得。 **任意命题均有逻辑等价的范式**

任意真值函数均可表示为范式

联结词的完全组

由定理1.12 知,对于任何 n 元真值函数 f,存在命题 A 其中仅用联结词 \neg , \land , \lor 使 $f = H_A$ 。 这就说明 $\{\neg, \land, \lor\}$ 是所谓联结词的函数完全组。 又由于

- $\bullet \ A \land B \simeq \neg (\neg A \lor \neg B)$
- $A \lor B \simeq \neg(\neg A \land \neg B)$

故 $\{\neg, \wedge\}$, $\{\neg, \vee\}$, $\{\neg, \to\}$ 亦为联结词的函数完全组。

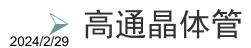
CMOS

 CMOS: Complementary Metal Oxide Semiconductor (互补金 属氧化物半导体)

- PMOS: positive channel Metal Oxide Semiconductor
 - > 低通晶体管

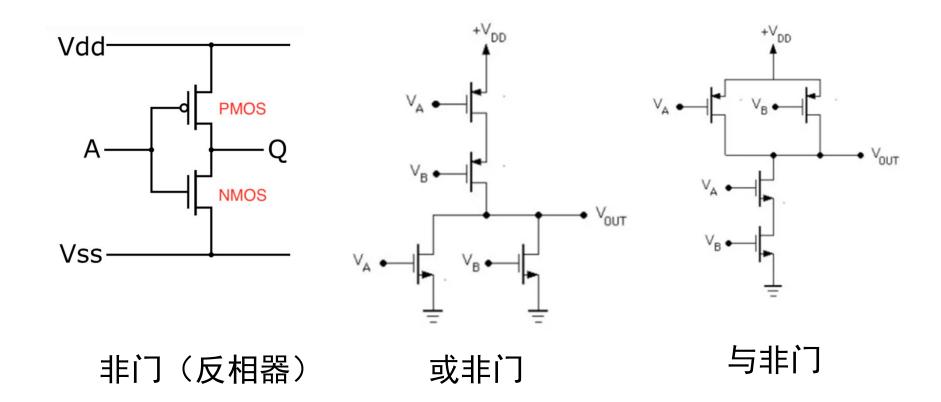
 NMOS: negative channel Metal Oxide Semiconductor





CMOS与VLSI芯片

● VLSI: very-large-scale integration,超大规模集成电路



例1.6. $求 \neg ((P \land Q) \rightarrow R)$ 的 $\land \lor \neg$ nf 和 $\lor \land \neg$ nf。 Solution.

 $\therefore P \land Q \land \neg R$ 既为原式的 $\land \lor - \text{nf}$ 又为 $\lor \land - \text{nf}$ 。

定义1.17. 一个 sequent 是一个二元组 (Γ, Δ) ,记为 $\Gamma \vdash \Delta$,这里 Γ, Δ 为命题的有穷集合(可为空),称 Γ 为前件, Δ 为后件。 命题逻辑的自然推理系统 G' 由以下 公理 和 规则 组成, $\Gamma, \Delta, \Lambda, \Theta$ 表示任何命题有穷集合,A, B 表示任何命题。

• 公理: $\Gamma, A, \Delta \vdash \Lambda, A, \Theta$

$$\neg L : \frac{\Gamma, \Delta \vdash \Lambda, A}{\Gamma, \neg A, \Delta \vdash \Lambda} \qquad \neg R : \frac{\Gamma, A \vdash \Lambda, \Theta}{\Gamma \vdash \Lambda, \neg A, \Theta} \\
\lor L : \frac{\Gamma, A, \Delta \vdash \Lambda}{\Gamma, A \lor B, \Delta \vdash \Lambda} \qquad \lor R : \frac{\Gamma \vdash \Lambda, A, B, \Theta}{\Gamma \vdash \Lambda, A \lor B, \Theta} \\
\land L : \frac{\Gamma, A, B, \Delta \vdash \Lambda}{\Gamma, A \land B, \Delta \vdash \Lambda} \qquad \land R : \frac{\Gamma \vdash \Lambda, A, \Theta}{\Gamma \vdash \Lambda, A \land B, \Theta} \\
\to L : \frac{\Gamma, \Delta \vdash A, \Lambda}{\Gamma, A \to B, \Delta \vdash \Lambda} \qquad \to R : \frac{\Gamma, A \vdash \Lambda, B, \Theta}{\Gamma \vdash \Lambda, A \to B, \Theta} \\
Cut: \frac{\Gamma \vdash \Lambda, A}{\Gamma, A \to B, \Delta \vdash \Lambda} \qquad \triangle, A \vdash \Theta$$

树状推理模式

系统 G' 中只有一条公理,有多条规则,每条规则都有名称,

呈形
$$\frac{S'}{S}$$
 或 $\frac{S_1, S_2}{S}$, 这可以被看作树

规则的upper sequent S_1, S_2 被称为前提,lower sequent被称为结论。 G' 中规则被称为推理规则,规则中被作用的命题被称为主命题,而不变的命题被称为辅命题。

每个公理和规则是模式(schema),它们可有无穷多个实例。

例1.7.
$$\frac{A, B \vdash P, D \quad A, Q, B \vdash D}{A, P \rightarrow Q, B \vdash D}$$
 为 $\rightarrow L$ 的实例。

G'的一些基本概念

定义1.18. 设 Γ 为 $\{A_1, A_2, \dots, A_m\}$, Δ 为 $\{B_1, B_2, \dots, B_n\}$,

- 1. $\Gamma \vdash \Delta$ 有反例 (falsifiable) 指存在赋值 $v \notin v \models (A_1 \land \cdots \land A_m) \land (\neg B_1 \land \cdots \land \neg B_n)$ 这时称 v 反驳 $\Gamma \vdash \Delta$ 。
- 2. $\Gamma \vdash \Delta$ 有效(valid)指对任何赋值 $v, v \models (A_1 \land \cdots \land A_m) \rightarrow (B_1 \lor B_2 \lor \cdots \lor B_n)$ 这时称 v 满足 $\Gamma \vdash \Delta$ 。
- 3. $\Gamma \vdash \Delta$ 有效也被记为 $\Gamma \vDash \Delta$ 。
- 4. 当 m = 0 时, $\vdash B_1, \dots, B_n$ 有反例指($\lnot B_1 \land \dots \land \lnot B_n$)可满足; $\vdash B_1, \dots, B_n$ 有效指 $(B_1 \lor \dots \lor B_n)$ 永真。
- 5. 当 n=0 时, A_1, \dots, A_n 上有反例指 $(A_1 \wedge \dots \wedge A_m)$ 可满足; A_1, \dots, A_m 上有效指 $(A_1 \wedge \dots \wedge A_m)$ 不可满足。
- 6. 约定 { } ⊢ { } 非有效。
- **命题1.19**. $\Gamma \vdash \Delta$ 有效 iff $\Gamma \vdash \Delta$ 无反例。

G'的一些性质

引理1.20. 对于 G' 系统的每条异于 cut 的规则,

- 1. 赋值 v 反驳规则的结论 iff v 至少反驳规则的一个前提;
- 2. v 满足规则的结论 iff v 满足规则的所有前提。
- 3. 对于 G' 中的每条异于 cut 的规则,每个前提有效 iff 结论有效。

注: 若 v 反驳 cut 的结论,则 v 至少反驳 cut 的一个前提,反之不然。

反例:

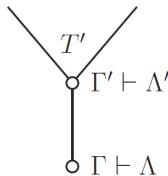
$$\frac{P_1 \vdash P_2 \quad P_2 \vdash P_3}{P_1 \vdash P_3} \quad \text{cut}$$

取
$$v(P_1) = v(P_3) = T$$
, $v(P_2) = F$ 即可。

证明树

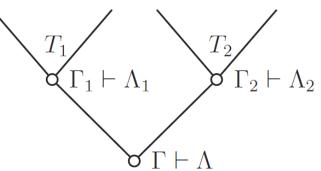
定义1.21. 设 $\Gamma \vdash \Lambda$ 为 sequent, 树 T 为 $\Gamma \vdash \Lambda$ 的证明树指

- 1. 当 $\Gamma \vdash \Lambda$ 为 \mathbf{G}' 公理,以 $\Gamma \vdash \Lambda$ 为节点的单点树 T 为其证明树。
- $\Gamma' \vdash \Lambda'$ 2. 当 $\frac{\Gamma' \vdash \Lambda'}{\Gamma \vdash \Lambda}$ 为 \mathbf{G}' 规则,若 T' 为 $\Gamma' \vdash \Lambda'$ 的证明树,则树 T: T'



为 Γ⊢Λ 的证明树。

3. 当 $\frac{\Gamma_1 \vdash \Lambda_1 \ \Gamma_1 \vdash \Lambda_2}{\Gamma \vdash \Lambda}$ 为 **G'** 规则,若 T_i 为 $\Gamma_i \vdash \Lambda_i$ 的证明树 (i = 1, 2), 树 T:



为 Γ \vdash Λ 的证明树。

可证

定义1.22. 设 $\Gamma \vdash \Lambda$ 为 sequent, $\Gamma \vdash \Lambda$ 可证 (provable) 指存在 $\Gamma \vdash \Lambda$ 的证明树。

例1.8. 证明

$$1. \vdash A \rightarrow A$$

$$2. \vdash A \lor \neg A$$

$$3. \vdash \neg (A \land \neg A)$$

可证。

证明:

1.
$$Ax$$

$$\frac{A \vdash A}{\vdash A \to A} \to R$$

2.

$$\frac{Ax}{A \vdash A} \neg R$$

$$\frac{A \vdash A}{\vdash A, \neg A} \neg R$$

$$\frac{A \vdash A}{\vdash A \lor \neg A} \lor R$$

3.

$$\frac{Ax}{A \vdash A} \neg L$$

$$\frac{A \vdash A}{A, \neg A \vdash} \neg L$$

$$\frac{A \land \neg A \vdash}{A \land \neg A \vdash} \land L$$

$$\vdash \neg (A \land \neg A)$$

G'的Soundness

定理1.23 (G' 的 Soundness). 若 $\Gamma \vdash \Delta$ 在 G' 中可证,则 $\Gamma \vdash \Delta$ 有效。

证明: 下面对 $\Gamma \vdash \Delta$ 的证明树的结构归纳证明 $\Gamma \vdash \Delta$ 有效,即 $\Gamma \vdash \Delta$ 。 $\Gamma \vdash \Delta$ 为公理,易见 $\Gamma \vdash \Delta$ 。先设下面的 (R_1) 和 (R_2) 不是规则 cut。

情形1: $\frac{\Gamma_1 \vdash \Delta_1}{\Gamma \vdash \Delta}(R_1)$ 由 I.H.知 $\Gamma_1 \vDash \Delta_1$,从而由引理1.20 知 $\Gamma \vDash \Delta$ 。

情形2: $\frac{\Gamma_1 \vdash \Delta_1 \quad \Gamma_2 \vdash \Delta_2}{\Gamma \vdash \Delta}(R_2) \qquad \text{由 I.H. } \Pi\Gamma_1 \vDash \Delta_1, \ \Gamma_1 \vDash \Delta_1, \\ \text{从而由引理1.20} \Pi\Gamma \vDash \Delta_0.$

情形3: 设 Γ 为 Γ_1 , Γ_2 且 Δ 为 Δ_1 , Δ_2 , $\frac{\Gamma_1 \vdash \Delta_1, A \quad \Gamma_2, A \vdash \Delta_2}{\Gamma \vdash \Delta}(cut)$

由 I.H.知 $\Gamma_1 \vDash \Delta_1$, A 且 Γ_2 , $A \vDash \Delta_2$ 。反设非 $\Gamma \vDash \Delta$,即有 v 反驳 $\Gamma \vDash \Delta$ 。

- 1. 当 v(A) = T 时,v 反驳 $\Gamma_2, A \vdash \Delta_2$,矛盾!
- 2. 当 v(A) = F 时,v 反驳 $\Gamma_1 \vdash \Delta_1, A$,矛盾!

故 $\Gamma \models \Delta$.

G'的Completeness

定理1.24 (G'的completeness).若 $\Gamma \vdash \Delta$ 有效,则 $\Gamma \vdash \Delta$ 在 G' 中可证。

证明:设 m 为 $\Gamma \vdash \Delta$ 中联结词出现的个数,以下对 m 作归纳证明 (*):在 G' 中存在 $\Gamma \vdash \Delta$ 的一个无 cut 证明树,其中规则个数 $< 2^m$.

当 m=0 时, $\Gamma \vdash \Delta$ 中无联结词,故呈形 $P_1, \dots, P_n \vdash Q_1, \dots, Q_n$, P_i, Q_j 均为命题符,: $\Gamma \models \Delta$,:必有一个 P 同时出现于 $\Gamma \vdash \Delta$ 的左右两边,从而 $\Gamma \vdash \Delta$ 为公理,它有证明树,其中无规则。故(*)成立.

对于 m > 0,我们将按照联结词在 Γ, Δ 中最外位置的情形来证明(*)

情形1. 设 Γ 为 $\neg A$, Γ' . 我们可作 $\Gamma \vdash \Delta$ 的推理如下:

$$\frac{\Gamma' \vdash \Delta, A}{\neg A, \Gamma' \vdash \Delta}$$

- $\Gamma \vdash \Delta$,
- : 由引理 1.20, $\Gamma' \models \Delta, A$, 而 $\Gamma' \models \Delta, A$ 中联结词出现的个数 $\leq m 1$, 从而由 I.H.知 $\Gamma' \models \Delta, A$ 有一个无 cut 证明,其中规则个数 $< 2^{m-1}$, 因此 $\Gamma \vdash \Delta$ 有一个无cut证明,其中规则个数 $< 2^{m-1} + 1 \leq 2^m$.

情形2. 设 Δ 为 $\neg B$, Δ' . 与情形 1 同理.

情形3. 设 Γ 为 $A \wedge B$, $\Gamma' \models \Delta$, 我们有推理

$$\frac{A, B, \Gamma' \vdash \Delta}{A \land B, \Gamma' \vdash \Delta}$$

从而由引理1.20, $A, B, \Gamma' \models \Delta$,

由 I.H.知 $A, B, \Gamma' \models \Delta$ 有无 cut 证明树,其中规则个数 $< 2^{m-1}$,因此 $\Gamma \vdash \Delta$ 有无 cut 证明树,其中规则个数 $< 2^{m-1} + 1 < 2^m$.

情形4. 设 Δ 为 Δ' , $A \wedge B$,我们有推理

$$\frac{\Gamma \vdash \Delta', A \quad \Gamma \vdash \Delta', B}{\Gamma \vdash \Delta', A \land B}$$

 \therefore 由引理 1.20, $\Gamma \vDash \Delta'$, A 且 $\Gamma \vDash \Delta'$, B。

而 $\Gamma \vdash \Delta', A 与 \Gamma \vdash \Delta', B$ 中的联结词出现的个数 $\leq m - 1$,

故由 I.H. 知 $\Gamma \vdash \Delta'$, A 和 $\Gamma \vdash \Delta'$, B 皆有一个无 cut 证明,其中规则数 $< 2^{m-1}$,

从而 $\Gamma \vdash \Delta$ 有 无 cut 证明,

其中规则数
$$\leq (2^{m-1}-1) + (2^{m-1}-1) + 1 < 2^m$$
.

其余情况同理可证.归纳完成.

一些推论

系1.25 Γ \vdash Δ 可证 iff Γ \vdash Δ 有效.

定理1.26 若 $\Gamma \vdash \Delta$ 在 G' 中可证,则 $\Gamma \vdash \Delta$ 在 G' 中有一个无 cut 证明.

证明: 若 $\Gamma \vdash \Delta$ 可证,则 $\Gamma \vDash \Delta$,

由定理1.24 知 $\Gamma \vdash \Delta$ 有一个无 cut 证明.

紧致性(Compactness)定理

定理1.27(G'的compactness).设 Γ 为命题的集合,若 Γ 的任何有穷子集可满足,则 Γ 可满足。

定义1.28 称 Δ 为有穷可满足指 Δ 的任何有穷子集可满足。

引理1.29 所有命题可被排列为 $A_0, A_1, \ldots, A_n, \ldots$ $(n \in \mathbb{N})$ 。

引理1.30 设 Δ 为有穷可满足,A 为命题。若 $\Delta \cup \{A\}$ 不为有穷可满足,则 $\Delta \cup \{\neg A\}$ 为有穷可满足。

证明: 设 $\Delta \cup \{A\}$ 不为有穷可满足,反设 $\Delta \cup \{\neg A\}$ 也不为有穷可满足,从而存在 $\Delta_1, \Delta_2 \subseteq \Delta$ 使 Δ_1, Δ_2 皆有穷且 $\Delta_1 \cup \{A\}$ 与 $\Delta_2 \cup \{\neg A\}$ 皆不可满足。由于 $\Delta_1 \cup \Delta_2$ 为 Δ 的有穷子集,故有 v 使 $v \models \Delta_1 \cup \Delta_2$,然

- (1) 当 $v \models A$ 时, $v \models \Delta_1 \cup \{A\}$,从而矛盾。
- (2) 当 $v \nvDash A$ 时, $v \vDash \Delta_2 \cup \{\neg A\}$,从而矛盾。

故 Δ ∪ {¬A} 有穷可满足。

紧致性定理的证明

证明: 令

$$\Gamma_0 = \Gamma$$

$$\Gamma_{n+1} = \begin{cases} \Gamma_n \cup \{A_n\} & , \ \text{若 } \Gamma_n \cup \{A_n\} \text{ 有穷可满足,} \\ \Gamma_n \cup \{\neg A_n\} & , \text{ 否则.} \end{cases}$$

先对 n 归纳证明 Γ_n 有穷可满足.....(*)。

Basis n=0 时,易见 (*) 成立。

I.H. 设 Γ_n 有穷可满足。

Ind. Step 若 $\Gamma_n \cup \{A_n\}$ 有穷可满足,则 Γ_{n+1} 有穷可满足,否则由引理 1.30 知 $\Gamma_n \cup \{\neg A_n\}$ 有穷可满足,即 Γ_{n+1} 有穷可满足。归纳完成。

 $\Diamond \Delta = \bigcup \{\Gamma_n | n \in \mathbb{N}\}$,我们有 Δ 为有穷可满足。

设 Φ 为 Δ 的有穷子集,从而有 k 使 $\Phi \subseteq \{A_0,A_1,\ldots,A_k\}$, 故 $\Phi \subseteq \Gamma_{k+1}$, 因此 Δ 有穷可满足。 对任何命题变元 p_i , $p_i \in \Delta$ 或 $\neg p_i \in \Delta$ 且恰具其一。

设 p_i 为 A_l 。若 $p_i \notin \Delta$,则 $A_l \notin \Delta$,从而 $\Gamma_l \cup \{A_l\}$ 不为有穷可满足,因此 $\neg A_l \in \Gamma_{l+1}$,故 $\neg p_i \in \Delta$ 。

又反设 $p_i, \neg p_i \in \Delta$,从而 Δ 的子集 $\{p_i, \neg p_i\}$ 不可满足,故 Δ 不为有穷可满足。

以下对 A 的结构归纳证明: 若 $A \in \Delta$ 则 $v \models A$, 否则 $v \not\models A$(*)。

情形 1. A 为命题变元 p_i , 由上知 (*) 成立。

情形 2. A 为 $\neg B$ 。

- 1. 当 $A \in \Delta$ 时, Δ 为有穷可满足,所以 $B \notin \Delta$,从而由 I.H.知 $v \nvDash B$,从而 $v \models \neg B$ 。
- 2. 当 $A \notin \Delta$ 时,即 $\neg B \notin \Delta$,设 B 为 A_l ,从而 $\Gamma_l \cup \{B\}$ 有穷可满足(若不然,有 $\neg B \in \Gamma_{l+1}$,与 $\neg B \notin \Delta$ 矛盾)。故 $B \in \Delta$,由 I.H. 知 $v \models B$,从而 $v \not\models A$ 。

NANG UNIVERSE UNIVERS

情形 3. $A \rightarrow B \wedge C$ 。

- 1. 当 $A \in \Delta$ 时,有 $B \in \Delta$ 。 反设 $B \notin \Delta$,从而 $\neg B \in \Delta$,但 $\{A, \neg B\}$ 不可满足,矛盾。 因此 $B \in \Delta$,同理 $C \in \Delta$ 。 由 I.H.知 $v \models B, v \models C$,从而 $v \models B \land C$,即 $v \models A$ 。
- 2. 当 $A \notin \Delta$ 时,有 $B \notin \Delta$ 或 $C \notin \Delta$ 。 反设 $B \in \Delta$ 且 $C \in \Delta$,从而由 $A \notin \Delta$ 知 $\neg A \in \Delta$,然 $\{\neg A, B, C\}$ 不可满足,故矛盾。 因此 $B \notin \Delta$ 或 $C \notin \Delta$ 。 不妨设 $B \notin \Delta$,从而 $v \not\models B$,因此 $v \not\models A$ 。

其他情形同理可证(*)成立。

因此我们有 $v \models \Delta$, 故 Δ 可满足, 从而 Γ 可满足。

本讲小结

NANU-THO UNIVERSE

- 命题逻辑的语法
- 命题逻辑的语义
- 自然推理系统G'
- 3个重要的定理
 - Soundness
 - Completeness
 - Compactness